Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laena Pernomian is active.

Publication


Featured researches published by Laena Pernomian.


Frontiers in Physiology | 2012

Contribution of oxidative stress to endothelial dysfunction in hypertension

Bruno R. Silva; Laena Pernomian; Lusiane M. Bendhack

Endothelial dysfunction is the hallmark of hypertension, which is a multifactorial disorder. In the cardiovascular system reactive oxygen species play a pivotal role in controlling the endothelial function and vascular tone. Physiologically, the endothelium-derived relaxing factors (EDRFs) and endothelium-derived contractile factors (EDCFs) that have functions on the vascular smooth muscle cells. The relaxation induced by the EDRFs nitric oxide (NO), prostacyclin, and the endothelium-derived hyperpolarization factor (EDHF) could be impaired in hypertension. The impaired ability of endothelial cells to release NO along with enhanced EDCFs production has been described to contribute to the endothelium dysfunction, which appears to lead to several cardiovascular diseases. The present review discusses the role of oxidative stress, vascular endothelium, and vascular tone control by EDRFs, mainly NO, and EDCFs in different models of experimental hypertension.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Decreased endothelial nitric oxide, systemic oxidative stress, and increased sympathetic modulation contribute to hypertension in obese rats

Natália Veronez da Cunha; Phileno Pinge-Filho; Carolina Panis; Bruno R. Silva; Laena Pernomian; Marcella D. Grando; Rubens Cecchini; Lusiane M. Bendhack; Marli Cardoso Martins-Pinge

We investigated the involvement of nitric oxide (NO) and reactive oxygen species (ROS) on autonomic cardiovascular parameters, vascular reactivity, and endothelial cells isolated from aorta of monosodium glutamate (MSG) obese rats. Obesity was induced by administration of 4 mg/g body wt of MSG or equimolar saline [control (CTR)] to newborn rats. At the 60th day, the treatment was started with N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg) or 0.9% saline. At the 90th day, after artery catheterization, mean arterial pressure (MAP) and heart rate were recorded. Plasma was collected to assess lipid peroxidation. Endothelial cells isolated from aorta were evaluated by flow cytometry and fluorescence intensity (FI) emitted by NO-sensitive dye [4,5-diaminofluoresceindiacetate (DAF-2DA)] and by ROS-sensitive dye [dihydroethidium (DHE)]. Vascular reactivity was made by concentration-response curves of acetylcholine. MSG showed hypertension compared with CTR. Treatment with L-NAME increased MAP only in CTR. The MSG induced an increase in the low-frequency (LF) band and a decrease in the high-frequency band of pulse interval. L-NAME treatment increased the LF band of systolic arterial pressure only in CTR without changes in MSG. Lipid peroxidation levels were higher in MSG and were attenuated after L-NAME. In endothelial cells, basal FI to DAF was higher in CTR than in MSG. In both groups, acetylcholine increased FI for DAF from basal. The FI baseline to DHE was higher in MSG than in CTR. Acetylcholine increased FI to DHE in the CTR group, but decreased in MSG animals. We suggest that reduced NO production and increased production of ROS may contribute to hypertension in obese MSG animals.


European Journal of Pharmacology | 2013

Hydrogen peroxide modulates phenylephrine-induced contractile response in renal hypertensive rat aorta

Bruno R. Silva; Laena Pernomian; Marcella D. Grando; Jefferson H. Amaral; Jose E. Tanus-Santos; Lusiane M. Bendhack

Endothelium-derived factors play an important role in vascular tone control. This study aimed to evaluate how endothelium and reactive oxygen species (ROS) contribute to phenylephrine (PE)-induced contraction in renovascular hypertensive (2K-1C) and normotensive (2K) rats aortas. The effects of the superoxide scavenger Tiron (0.1mM and 1mM) or catalase (30 U/ml, 90 U/ml, 150 U/ml and 300 U/ml) on the PE-induced contraction were evaluated in both intact endothelium (E+) and denuded (E-) aortas. Endothelium removal increased the PE-induced contractions. The maximum contractile response decreased only in 2K-1C rat E+ aorta, and catalase (30 U/ml, 90 U/ml, 150 U/ml) partially reversed this effect. Endothelium increased the basal hydrogen peroxide (H2O2) production in 2K and 2K-1C rats aortas. PE-stimulated H2O2 production was higher in 2K-1C (E+/E-) than in 2K (E+/E-). Inhibition of the enzymes cyclooxygenase, NADPH-oxidase, xanthine-oxidase, and superoxide dismutase reduced the PE-stimulated H2O2 production in 2K-1C rat aorta. The decreased contraction to PE in 2K-1C rat aorta is partially due to endothelial H2O2 production; however, in denuded aorta, it contributes to maintaining the contractile response. Superoxide plays an important role on the PE-induced contraction in 2K rat denuded aorta, whereas in 2K-1C rat aorta, it is H2O2 that plays an important role in this effect.


Vasa-european Journal of Vascular Medicine | 2014

Counter-regulatory effects played by the ACE - Ang II-AT1 and ACE2-Ang-(1-7) - Mas axes on the reactive oxygen species-mediated control of vascular function:perspectives to pharmacological approaches in controlling vascular complications

Laena Pernomian; Larissa Pernomian; Carolina Baraldi Araujo Restini

The Renin-Angiotensin system plays an important role in the regulation of systemic blood pressure as well as in fluid and electrolyte balance. It is divided into two described axes, the ACE - Ang II - AT1 receptor, with Ang II as the main mediator, and the ACE2 - Ang-(1-7) - Mas receptor, with Ang-(1-7) responsible for the main effects. The main vascular effect induced by Ang II is contraction, while Ang-(1-7) includes relaxation in several vascular beds. Ang II also activates several cytokines that are important in the genesis of vascular inflammation and hypertrophy. In this context, Ang-(1-7) seems to have a protective role. Both AT1 and Mas receptors modulate, in different ways, the generation of, which are involved in the control of vascular tone and the genesis of vascular dysfunction triggered by several diseases, including diabetes mellitus, arterial hypertension and atherosclerosis. Thereby, this review presents an overview of the modulation played by the whole Renin-Angiotensin system on the reactive oxygen species-mediated control of vascular tone and the oxidative stress-elicited vascular dysfunction.


European Journal of Pharmacology | 2015

MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality

Larissa Pernomian; Alejandro F. Prado; Mayara S. Gomes; Laena Pernomian; Carlos H.T.P. da Silva; Raquel F. Gerlach; Ana M. de Oliveira

AT1 antagonists effectively prevent atherosclerosis since AT1 upregulation and angiotensin II-induced proinflammatory actions are critical to atherogenesis. Despite the classic mechanisms underlying the vasoprotective and atheroprotective actions of AT1 antagonists, the cross-talk between angiotensin-converting enzyme-angiotensin II-AT1 and angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axes suggests other mechanisms beyond AT1 blockage in such effects. For instance, angiotensin-converting enzyme 2 activity is inhibited by reactive oxygen species derived from AT1-mediated proinflammatory signaling. Since angiotensin-(1-7) promotes antiatherogenic effects, we hypothesized that the vasoprotective and atheroprotective effects of AT1 antagonists could result from their inhibitory effects on the AT1-mediated negative modulation of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Interestingly, our results showed that early atherosclerosis triggered in thoracic aorta from high cholesterol fed-Apolipoprotein E-deficient mice impairs angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality by a proinflammatory-redox AT1-mediated pathway. In such mechanism, AT1 activation leads to the aortic release of tumor necrosis factor-α, which stimulates NAD(P)H oxidase/Nox1-driven generation of superoxide and hydrogen peroxide. While hydrogen peroxide inhibits angiotensin-converting enzyme 2 activity, superoxide impairs MAS functionality. Candesartan treatment restored the functionality of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis by inhibiting the proinflammatory-redox AT1-mediated mechanism. Candesartan also promoted vasoprotective and atheroprotective effects that were mediated by MAS since A779 (MAS antagonist) co-treatment inhibited them. The role of MAS receptors as the final mediators of the vasoprotective and atheroprotective effects of candesartan was supported by the vascular actions of angiotensin-(1-7) upon the recovery of the functionality of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis.


European Journal of Pharmacology | 2014

Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta.

Bruno R. Silva; Laena Pernomian; Marcella D. Grando; Lusiane M. Bendhack

The endothelial nitric oxide synthase (eNOS) plays an important role in the control of the vascular tone. This work aimed to evaluate the role of an α1-adrenoceptor agonist phenylephrine (PE) on eNOS activity and downstream signaling pathway activation in normotensive (2K) and renal hypertensive (2K-1C) intact-endothelium rat aortas. Concentration-effect curves were performed for PE in intact-endothelium aortas from 2K and 2K-1C rats, in the absence of or in the presence of NOS or soluble guanylyl cyclase (sGC) inhibitor. Intact endothelium aortas were stimulated with PE in organ chambers and eNOS Ser(1177)/Thr(495) phosphorylation expression was evaluated by western blot. Nitric Oxide (NO) production was evaluated in isolated endothelial cells from 2K and 2K-1C rat aortas by flow-cytometry using NO selective fluorescent probe, DAF-2DA. The sGC activity/expression was also evaluated. PE-induced contractile response is lower in 2K-1C than in 2K intact-endothelium rat aorta. This is due to higher eNOS Ser(1177) phosphorylation in 2K-1C, which induces the eNOS overactivation. It was abolished by NOS or sGC inhibition. Phenylephrine reduces NO production in 2K as compared to the basal level, but it is not modified in 2K-1C. In PE-stimulated endothelial cells, the NO production is higher in 2K-1C than in 2K. Phenylephrine induces higher cGMP production in 2K-1C than in 2K, despite the lower expression of sGC in 2K-1C. Our results suggest that alpha1-adrenoceptor activation contributes to the increased activity of the enzyme eNOS by Ser(1177) phosphorylation in 2K-1C intact-endothelium aorta, which consequently decreases PE-induced contractile response.


European Journal of Pharmacology | 2015

Acute restraint stress increases carotid reactivity in type-I diabetic rats by enhancing Nox4/NADPH oxidase functionality.

Josimar D. Moreira; Larissa Pernomian; Mayara S. Gomes; Laena Pernomian; Rafael P. Moreira; Alejandro F. Prado; Carlos H.T.P. da Silva; Ana M. de Oliveira

Hyperglycemia increases the generation of reactive oxygen species and affects systems that regulate the vascular tone including renin-angiotensin system. Stress could exacerbate intracellular oxidative stress during Diabetes upon the activation of angiotensin AT1/NADPH oxidase pathway, which contributes to the development of diabetic cardiovascular complications. For this study, type-I Diabetes was induced in Wistar rats by intraperitoneal injection of streptozotocin. 28 days after streptozotocin injection, the animals underwent to acute restraint stress for 3 h. Cumulative concentration-response curves for angiotensin II were obtained in carotid rings pre-treated or not with Nox or cyclooxygenase inhibitors. Nox1 or Nox4 expression and activity were assessed by Western blotting and lucigenin chemiluminescence, respectively. The role of Nox1 and Nox4 on reactive oxygen species generation was evaluated by flow cytometry and Amplex Red assays. Cyclooxygenases expression was assessed by real-time polymerase chain reaction. The contractile response evoked by angiotensin II was increased in diabetic rat carotid. Acute restraint stress increased this response in this vessel by mechanisms mediated by Nox4, whose local expression and activity in generating hydrogen peroxide are increased. The contractile hyperreactivity to angiotensin II in stressed diabetic rat carotid is also mediated by metabolites derived from cyclooxygenase-2, whose local expression is increased. Taken together, our findings suggest that acute restraint stress exacerbates the contractile hyperreactivity to angiotensin II in diabetic rat carotid by enhancing Nox4-driven generation of hydrogen peroxide, which evokes contractile tone by cyclooxygenases-dependent mechanisms. Finally, these findings highlight the harmful role played by acute stress in modulating diabetic vascular complications.


Vascular Pharmacology | 2015

Vasoprotective effects of neurocompensatory response to balloon injury during diabetes involve the improvement of Mas signaling by TGFβ1 activation

Larissa Pernomian; Mayara S. Gomes; Laena Pernomian; Rafael P. Moreira; F.M.A. Corrêa; Ana M. de Oliveira

Balloon injury in diabetic rats triggers a sensory neurocompensatory response that restores the blood flow in contralateral carotid. These vasoprotective effects result from H2O2-mediated relaxation that counteracts AT1-dependent contractile hyperreactivity. The most important mechanism from the renin-angiotensin-system in counteracting AT1-mediated effects is that one is mediated by Mas receptors. Thus, we hypothesized that the vasoprotective effects of balloon neurocompensation in diabetic rats could result from the improvement of Mas signaling by H2O2-mediated sensory mechanisms. NK1 receptors are sensory components whose activation could lead to H2O2 generation upon TGFβ1 release and ALK5-mediated Nox4 upregulation. Based on this, we aimed to investigate: (1) the role of the TGFβ1/ALK5-Nox4-H2O2 pathway on modulating Mas signaling in diabetic rat contralateral carotid; and (2) the contribution of Mas signaling in the control of local blood flow. Our results showed that balloon neurocompensation restored diabetic rat contralateral carotid flow by improving Mas signaling through NK1-mediated TGFβ1 release. TGFβ1/ALK5 activation enhanced Nox4 expression and Nox4-driven generation of H2O2. In turn, H2O2 enhanced the local Mas-mediated relaxation. Since restenosis impairs diabetic rat ipsilateral carotid flow, the restoration of diabetic rat contralateral carotid flow may prevent further damages in cerebral irrigation by carotid pathways after angioplasty during diabetes.


Frontiers in Physiology | 2016

C-Type Natriuretic Peptide Induces Anti-contractile Effect Dependent on Nitric Oxide, Oxidative Stress, and NPR-B Activation in Sepsis

Laena Pernomian; Alejandro F. Prado; Bruno R. Silva; Aline Azevedo; Lucas C. Pinheiro; Jose E. Tanus-Santos; Lusiane M. Bendhack

Aims: To evaluate the role of nitric oxide, reactive oxygen species (ROS), and natriuretic peptide receptor-B activation in C-type natriuretic peptide-anti-contractile effect on Phenylephrine-induced contraction in aorta isolated from septic rats. Methods and Results: Cecal ligation and puncture (CLP) surgery was used to induce sepsis in male rats. Vascular reactivity was conducted in rat aorta and resistance mesenteric artery (RMA). Measurement of survival rate, mean arterial pressure (MAP), plasma nitric oxide, specific protein expression, and localization were evaluated. Septic rats had a survival rate about 37% at 4 h after the surgery, and these rats presented hypotension compared to control-operated (Sham) rats. Phenylephrine-induced contraction was decreased in sepsis. C-type natriuretic peptide (CNP) induced anti-contractile effect in aortas. Plasma nitric oxide was increased in sepsis. Nitric oxide-synthase but not natriuretic peptide receptor-B expression was increased in septic rat aortas. C-type natriuretic peptide-anti-contractile effect was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. Natriuretic peptide receptor-C, protein kinase-Cα mRNA, and basal nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS production were lower in septic rats. Phenylephrine and CNP enhanced ROS production. However, stimulated ROS production was low in sepsis. Conclusion: CNP induced anti-contractile effect on Phenylephrine contraction in aortas from Sham and septic rats that was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation.


European Journal of Pharmacology | 2015

Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

Larissa Pernomian; Laena Pernomian; Mayara S. Gomes; Carlos H.T.P. da Silva

The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors.

Collaboration


Dive into the Laena Pernomian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno R. Silva

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Aline Azevedo

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge