Larissa Pernomian
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Larissa Pernomian.
European Journal of Pharmacology | 2012
Larissa Pernomian; Mayara S. Gomes; Carolina Baraldi Araujo Restini; Leandra Naira Zambelli Ramalho; Carlos R. Tirapelli; Ana M. de Oliveira
The modulation played by reactive oxygen species on the angiotensin II-induced contraction in type I-diabetic rat carotid was investigated. Concentration-response curves for angiotensin II were obtained in endothelium-intact or endothelium-denuded carotid from control or streptozotocin-induced diabetic rats, pre-treated with tiron (superoxide scavenger), PEG-catalase (hydrogen peroxide scavenger), dimethylthiourea (hydroxyl scavenger), apocynin [NAD(P)H oxidase inhibitor], SC560 (cyclooxygenase-1 inhibitor), SC236 (cyclooxygenase-2 inhibitor) or Y-27632 (Rho-kinase inhibitor). Reactive oxygen species were measured by flow cytometry in dihydroethidium (DHE)-loaded endothelial cells. Cyclooxygenase and AT(1)-receptor expression was assessed by immunohistochemistry. Diabetes increased the angiotensin II-induced contraction but reduced the agonist potency in rat carotid. Endothelium removal, tiron or apocynin restored the angiotensin II-induced contraction in diabetic rat carotid to control levels. PEG-catalase, DMTU or SC560 reduced the angiotensin II-induced contraction in diabetic rat carotid at the same extent. SC236 restored the angiotensin II potency in diabetic rat carotid. Y-27632 reduced the angiotensin II-induced contraction in endothelium-intact or -denuded diabetic rat carotid. Diabetes increased the DHE-fluorescence of carotid endothelial cells. Apocynin reduced the DHE-fluorescence of endothelial cells from diabetic rat carotid to control levels. Diabetes increased the muscular cyclooxygenase-2 expression but reduced the muscular AT(1)-receptor expression in rat carotid. In summary, hydroxyl radical, hydrogen peroxide and superoxide anion-derived from endothelial NAD(P)H oxidase mediate the hyperreactivity to angiotensin II in type I-diabetic rat carotid, involving the participation of cyclooxygenase-1 and Rho-kinase. Moreover, increased muscular cyclooxygenase-2 expression in type I-diabetic rat carotid seems to be related to the local reduced AT(1)-receptor expression and the reduced angiotensin II potency.
Vasa-european Journal of Vascular Medicine | 2014
Laena Pernomian; Larissa Pernomian; Carolina Baraldi Araujo Restini
The Renin-Angiotensin system plays an important role in the regulation of systemic blood pressure as well as in fluid and electrolyte balance. It is divided into two described axes, the ACE - Ang II - AT1 receptor, with Ang II as the main mediator, and the ACE2 - Ang-(1-7) - Mas receptor, with Ang-(1-7) responsible for the main effects. The main vascular effect induced by Ang II is contraction, while Ang-(1-7) includes relaxation in several vascular beds. Ang II also activates several cytokines that are important in the genesis of vascular inflammation and hypertrophy. In this context, Ang-(1-7) seems to have a protective role. Both AT1 and Mas receptors modulate, in different ways, the generation of, which are involved in the control of vascular tone and the genesis of vascular dysfunction triggered by several diseases, including diabetes mellitus, arterial hypertension and atherosclerosis. Thereby, this review presents an overview of the modulation played by the whole Renin-Angiotensin system on the reactive oxygen species-mediated control of vascular tone and the oxidative stress-elicited vascular dysfunction.
Journal of Pharmacy and Pharmacology | 2013
Larissa Pernomian; Mayara S. Gomes; Carolina Baraldi Araujo Restini; André S. Pupo; Ana M. de Oliveira
Our main objectives were to investigate the affinity properties of endothelial and muscular α1D‐adrenoceptors and to characterize the cross‐talk between endothelial α1D‐adrenoceptors and β2‐adrenoceptors in rat carotid.
European Journal of Pharmacology | 2015
Larissa Pernomian; Alejandro F. Prado; Mayara S. Gomes; Laena Pernomian; Carlos H.T.P. da Silva; Raquel F. Gerlach; Ana M. de Oliveira
AT1 antagonists effectively prevent atherosclerosis since AT1 upregulation and angiotensin II-induced proinflammatory actions are critical to atherogenesis. Despite the classic mechanisms underlying the vasoprotective and atheroprotective actions of AT1 antagonists, the cross-talk between angiotensin-converting enzyme-angiotensin II-AT1 and angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axes suggests other mechanisms beyond AT1 blockage in such effects. For instance, angiotensin-converting enzyme 2 activity is inhibited by reactive oxygen species derived from AT1-mediated proinflammatory signaling. Since angiotensin-(1-7) promotes antiatherogenic effects, we hypothesized that the vasoprotective and atheroprotective effects of AT1 antagonists could result from their inhibitory effects on the AT1-mediated negative modulation of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Interestingly, our results showed that early atherosclerosis triggered in thoracic aorta from high cholesterol fed-Apolipoprotein E-deficient mice impairs angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality by a proinflammatory-redox AT1-mediated pathway. In such mechanism, AT1 activation leads to the aortic release of tumor necrosis factor-α, which stimulates NAD(P)H oxidase/Nox1-driven generation of superoxide and hydrogen peroxide. While hydrogen peroxide inhibits angiotensin-converting enzyme 2 activity, superoxide impairs MAS functionality. Candesartan treatment restored the functionality of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis by inhibiting the proinflammatory-redox AT1-mediated mechanism. Candesartan also promoted vasoprotective and atheroprotective effects that were mediated by MAS since A779 (MAS antagonist) co-treatment inhibited them. The role of MAS receptors as the final mediators of the vasoprotective and atheroprotective effects of candesartan was supported by the vascular actions of angiotensin-(1-7) upon the recovery of the functionality of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis.
BioMed Research International | 2014
Larissa Pernomian; Mayara S. Gomes; Carolina Baraldi Araujo Restini; Ana M. de Oliveira
We hypothesized that endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species during type I-diabetes impairs carotid ACE2-angiotensin-(1–7)-Mas axis functionality, which accounts for the impaired carotid flow in diabetic rats. We also hypothesized that angiotensin-(1–7) chronic treatment of diabetic rats restores carotid ACE2-angiotensin-(1–7)-Mas axis functionality and carotid flow. Relaxant curves for angiotensin II or angiotensin-(1–7) were obtained in carotid from streptozotocin-induced diabetic rats. Superoxide or hydrogen peroxide levels were measured by flow cytometry in carotid endothelial cells. Carotid flow was also determined. We found that endothelial AT1-activated NAD(P)H oxidase-driven generation of superoxide and hydrogen peroxide in diabetic rat carotid impairs ACE2-angiotensin-(1–7)-Mas axis functionality, which reduces carotid flow. In this mechanism, hydrogen peroxide derived from superoxide dismutation inhibits ACE2 activity in generating angiotensin-(1–7) seemingly by activating I Cl,SWELL, while superoxide inhibits the nitrergic Mas-mediated vasorelaxation evoked by angiotensin-(1–7). Angiotensin-(1–7) treatment of diabetic rats restored carotid ACE2-angiotensin-(1–7)-Mas axis functionality by triggering a positive feedback played by endothelial Mas receptors, that blunts endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species. Mas-mediated antioxidant effects also restored diabetic rat carotid flow, pointing to the contribution of ACE2-angiotensin-(1–7)-Mas axis in maintaining carotid flow.
British Journal of Pharmacology | 2011
Larissa Pernomian; Gomes; A. M. de Oliveira
The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine‐induced relaxation and contraction in the contralateral carotid artery were studied.
European Journal of Pharmacology | 2015
Josimar D. Moreira; Larissa Pernomian; Mayara S. Gomes; Laena Pernomian; Rafael P. Moreira; Alejandro F. Prado; Carlos H.T.P. da Silva; Ana M. de Oliveira
Hyperglycemia increases the generation of reactive oxygen species and affects systems that regulate the vascular tone including renin-angiotensin system. Stress could exacerbate intracellular oxidative stress during Diabetes upon the activation of angiotensin AT1/NADPH oxidase pathway, which contributes to the development of diabetic cardiovascular complications. For this study, type-I Diabetes was induced in Wistar rats by intraperitoneal injection of streptozotocin. 28 days after streptozotocin injection, the animals underwent to acute restraint stress for 3 h. Cumulative concentration-response curves for angiotensin II were obtained in carotid rings pre-treated or not with Nox or cyclooxygenase inhibitors. Nox1 or Nox4 expression and activity were assessed by Western blotting and lucigenin chemiluminescence, respectively. The role of Nox1 and Nox4 on reactive oxygen species generation was evaluated by flow cytometry and Amplex Red assays. Cyclooxygenases expression was assessed by real-time polymerase chain reaction. The contractile response evoked by angiotensin II was increased in diabetic rat carotid. Acute restraint stress increased this response in this vessel by mechanisms mediated by Nox4, whose local expression and activity in generating hydrogen peroxide are increased. The contractile hyperreactivity to angiotensin II in stressed diabetic rat carotid is also mediated by metabolites derived from cyclooxygenase-2, whose local expression is increased. Taken together, our findings suggest that acute restraint stress exacerbates the contractile hyperreactivity to angiotensin II in diabetic rat carotid by enhancing Nox4-driven generation of hydrogen peroxide, which evokes contractile tone by cyclooxygenases-dependent mechanisms. Finally, these findings highlight the harmful role played by acute stress in modulating diabetic vascular complications.
European Journal of Pharmacology | 2014
Aline Carvalho Pereira; Vania C. Olivon; Larissa Pernomian; Ana M. de Oliveira
There are many evidences indicating a compensatory mechanism in contralateral carotids following balloon injury. Previously it was observed α1-adrenoceptor-mediated hyper-reactivity and impairment of calcium influx in contralateral carotids 4 days after injury. At a later stage, α1-adrenoceptor-mediated contraction is similar to the control and we hypothesized that downstream signaling was normal. In the present study, we aimed to evaluate α1-adrenoceptor-mediated calcium influx in contralateral carotids 15 days after balloon injury. Concentration-response curves for CaCl2 in presence of the α1-adrenoceptor agonist (phenylephrine), measurement of the intracellular calcium transient and the levels of reactive oxygen species using fluorescent dyes were performed in control and contralateral carotids. Phenylephrine-induced intracellular calcium mobilization in contralateral carotids was not altered, while phenylephrine-induced calcium influx was reduced in the contralateral artery. Nitric oxide synthase inhibitors, L-NAME or L-NNA, restored this response, but nitrite and nitrate levels were decreased in contralateral carotids. Additionally, a rise in oxygen free radicals was observed in contralateral carotids. Furthermore, Tiron, a superoxide anion scavenger, restored α1-adrenoceptor-mediated calcium influx in contralateral carotids to the control level. Similar results were observed with the selective potassium channels blockers 4-aminopyridine and charybdotoxin. In conclusion, data showed that balloon catheter injury resulted in increased superoxide anions levels, activation of potassium channels (Kv and BKCa), inhibition of calcium channels (Cav) and preservation of α1-adrenoceptor-mediated contraction at a later stage after injury.
European Journal of Pharmacology | 2013
Larissa Pernomian; Mayara S. Gomes; F.M.A. Corrêa; Carolina Baraldi Araujo Restini; Leandra Naira Zambelli Ramalho; Ana M. de Oliveira
The purpose from this study was to investigate the consequences of sensory neurocompensation to carotid balloon injury in diabetic rats on angiotensin II-induced contraction and basal blood flow in contralateral carotid. Concentration-response curves for angiotensin II and blood flow were obtained in contralateral carotid from non-treated or capsaicin-treated streptozotocin-induced diabetic rats that underwent carotid balloon injury. Diabetes increased angiotensin II-induced contraction and impaired the blood flow in non-operated rat carotid. In diabetic rats, balloon injury led to neointima formation, which reduced the blood flow in ipsilateral carotid. Carotid balloon injury in diabetic rats reduced angiotensin II-induced contraction and restored the blood flow in contralateral carotid when compared to diabetic non-operated rat carotid. Capsaicin inhibited the effects evoked by carotid balloon injury on diabetic rat contralateral carotid. Endothelium removal, PEG-catalase (hydrogen peroxide scavenger) or l-NPA (neuronal nitric oxide synthase, nNOS, inhibitor) increased angiotensin II-induced contraction in contralateral carotid from diabetic operated rats to the levels observed in diabetic non-operated rat carotid. Our findings suggest that carotid balloon injury in diabetic rats elicits a neurocompensation that attenuates the diabetic hyperreactivity to angiotensin II in contralateral carotid by a sensory nerves-dependent mechanism mediated by hydrogen peroxide derived from endothelial nNOS. This sensory mechanism also restored the blood flow in this vessel, compensating the impaired blood flow in diabetic rat ipsilateral carotid. Thus, our major conclusions are that Diabetes confers a vasoprotective significance to the neurocompensation to carotid balloon injury in preventing further damage at carotid cerebral irrigation after angioplasty in diabetic subjects.
European Journal of Pharmacology | 2015
Larissa Pernomian; Carlos H.T.P. da Silva
The important role played by aryl hydrocarbon receptor activation in the pathophysiology of atherosclerosis induced by cigarette smoke exposure has spurred the clinical interest in the development of aryl hydrocarbon receptor antagonists with atheroprotective efficacy. A few aryl hydrocarbon receptor antagonists were developed but the lack of structural information regarding the receptor ligand binding domain resulted in several limitations in the pharmacological properties of these compounds including partial agonism, allosterism, non-selectivity, cytotoxicity and susceptibility to bioactivation. These limitations make the progress of preclinical and clinical assays with the available aryl hydrocarbon receptor antagonists difficult. There is a great interest in developing pure, competitive, selective, nontoxic and resistant to bioactivation aryl hydrocarbon receptor antagonists. Current technology permits the development of pharmacologically ideal antagonists based on the chemical features of the aryl hydrocarbon receptor ligand binding domain. According to these characteristics, chlorinated derivatives of trans-stilbene meta-substituted with electrophilic aromatic directing groups would be effective prototypes for pure, competitive, selective, nontoxic and resistant to bioactivation antagonists for such receptor.