Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lahouaria Hadri is active.

Publication


Featured researches published by Lahouaria Hadri.


Journal of the American College of Cardiology | 2008

Reversal of Cardiac Dysfunction After Long-Term Expression of SERCA2a by Gene Transfer in a Pre-Clinical Model of Heart Failure

Yoshiaki Kawase; Hung Q. Ly; Fabrice Prunier; Djamel Lebeche; Yanfen Shi; Hongwei Jin; Lahouaria Hadri; Ryuichi Yoneyama; Kozo Hoshino; Yoshiaki Takewa; Susumu Sakata; Richard Peluso; Krisztina Zsebo; Judith K. Gwathmey; Jean-Claude Tardif; Jean-François Tanguay; Roger J. Hajjar

OBJECTIVES The aim of this study was to examine the effects of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) gene transfer in a swine heart failure (HF) model. BACKGROUND Reduced expression and activity of SERCA2a have been documented in HF. Prior studies have reported the beneficial effects of short-term SERCA2a overexpression in rodent models. However, the effects of long-term expression of SERCA2a in pre-clinical large animal models are not known. METHODS Yorkshire-Landrace pigs were used (n = 16) to create volume overload by percutaneously severing chordae tendinae of the mitral apparatus with a bioptome to induce mitral regurgitation. At 2 months, pigs underwent intracoronary delivery of either recombinant adeno-associated virus type 1 (rAAV1) carrying SERCA2a under a cytomegalovirus promoter (rAAV1.SERCA2a) (n = 10; group 1) or saline (n = 6; group 2). RESULTS At 2 months, study animals were found to be in a compensated state of volume-overload HF (increased left ventricular internal diastolic and systolic diameters [LVIDd and LVIDs]). At 4 months, gene transfer resulted in: 1) positive left ventricular (LV) inotropic effects (adjusted peak left ventricular pressure rate of rise (dP/dt)max/P, 21.2 +/- 3.2 s(-1) group 1 vs. 15.5 +/- 3.0 s(-1) group 2; p < 0.01); 2) improvement in LV remodeling (% change in LVIDs -3.0 +/- 10% vs. +15 +/- 11%, respectively; p < 0.01). At follow-up, brain natriuretic peptide levels remained stable in group 1 after gene transfer, in contrast to rising levels in group 2. Further, cardiac SERCA2a expression was significantly decreased in group 2 whereas in group 1 it was restored to normal levels. There was no histopathological evidence of acute myocardial inflammation or necrosis. CONCLUSIONS Using a large-animal, volume-overload model of HF, we report that long-term overexpression of SERCA2a by in vivo rAAV1-mediated intracoronary gene transfer preserved systolic function, potentially prevented diastolic dysfunction, and improved ventricular remodeling.


Circulation | 2009

Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy.

Lennart Suckau; Henry Fechner; Elie R. Chemaly; Stefanie Krohn; Lahouaria Hadri; Jens Kockskämper; Dirk Westermann; Egbert Bisping; Hung Ly; Xiaomin Wang; Yoshiaki Kawase; Jiqiu Chen; Lifan Liang; Isaac Sipo; Roland Vetter; Stefan Weger; Jens Kurreck; Volker A. Erdmann; Carsten Tschöpe; Burkert Pieske; Djamel Lebeche; Heinz-Peter Schultheiss; Roger J. Hajjar; Wolfgang Poller

Background— RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. Here, we report on targeted RNAi for the treatment of heart failure, an important disorder in humans that results from multiple causes. Successful treatment of heart failure is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban, a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy uses regulatory RNAs to achieve its effect. Methods and Results— We describe structural requirements to obtain high RNAi activity from adenoviral and adeno-associated virus (AAV9) vectors and show that an adenoviral short hairpin RNA vector (AdV-shRNA) silenced phospholamban in cardiomyocytes (primary neonatal rat cardiomyocytes) and improved hemodynamics in heart-failure rats 1 month after aortic root injection. For simplified long-term therapy, we developed a dimeric cardiotropic adeno-associated virus vector (rAAV9-shPLB) to deliver RNAi activity to the heart via intravenous injection. Cardiac phospholamban protein was reduced to 25%, and suppression of sacroplasmic reticulum Ca2+ ATPase in the HF groups was rescued. In contrast to traditional vectors, rAAV9 showed high affinity for myocardium but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (left ventricular end-diastolic pressure, dp/dtmin, and &tgr;) and systolic (fractional shortening) functional parameters to normal ranges. The massive cardiac dilation was normalized, and cardiac hypertrophy, cardiomyocyte diameter, and cardiac fibrosis were reduced significantly. Importantly, no evidence was found of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusions— Our data show for the first time the high efficacy of an RNAi therapeutic strategy in a cardiac disease.


Expert Opinion on Biological Therapy | 2010

Sarcoplasmic reticulum Ca 2+ ATPase as a therapeutic target for heart failure

Larissa Lipskaia; Elie R. Chemaly; Lahouaria Hadri; Anne-Marie Lompré; Roger J. Hajjar

The cardiac isoform of the sarco/endoplasmic reticulum Ca2+ATPase (SERCA2a) plays a major role in controlling excitation/contraction coupling. In both experimental and clinical heart failure, SERCA2a expression is significantly reduced which leads to abnormal Ca2+ handling and deficient contractility. A large number of studies in isolated cardiac myocytes and in small and large animal models of heart failure showed that restoring SERCA2a expression by gene transfer corrects the contractile abnormalities and improves energetics and electrical remodeling. Following a long line of investigation, a clinical trial is underway to restore SERCA2a expression in patients with heart failure using adeno-associated virus type 1. This review addresses the following issues regarding heart failure gene therapy: i) new insights on calcium regulation by SERCA2a; ii) SERCA2a as a gene therapy target in animal models of heart failure; iii) advances in the development of viral vectors and gene delivery; and iv) clinical trials on heart failure using SERCA2a. This review focuses on the new advances in SERCA2a- targeted gene therapy made in the last three years. In conclusion, SERCA2a is an important therapeutic target in various cardiovascular disorders. Ongoing clinical gene therapy trials will provide answers on its safety and applicability.


Circulation Research | 2005

Sarco/Endoplasmic Reticulum Ca2+-ATPase Gene Transfer Reduces Vascular Smooth Muscle Cell Proliferation and Neointima Formation in the Rat

Larissa Lipskaia; Federica del Monte; Thierry Capiod; Sabrina Yacoubi; Lahouaria Hadri; Michel Hours; Roger J. Hajjar; Anne-Marie Lompré

Proliferation of vascular smooth muscle cells (VSMC) is a primary cause of vascular disorders and is associated with major alterations in Ca2+ handling supported by loss of the sarco/endoplasmic reticulum calcium ATPase, SERCA2a. To determine the importance of SERCA2a in neointima formation, we have prevented loss of its expression by adenoviral gene transfer in a model of balloon injury of the rat carotid artery. Two weeks after injury, the intima/media ratio was significantly lower in SERCA2a-infected than in injured noninfected or injured &bgr;-galactosidase–infected carotids (0.29±0.04 versus 0.89±0.19 and 0.72±0.14, respectively; P<0.05), and was comparable to that observed in control carotids (0.21±0.03). The pathways leading to proliferation were analyzed in serum-stimulated VSMC. Forced expression of SERCA2a arrested cell cycle at the G1 phase and prevented apoptosis. SERCA2a inhibits proliferation through inactivation of calcineurin (PP2B) and its target transcription factor NFAT (nuclear factor of activated T-cells) resulting in lowering of cyclin D1 and pRb levels. By using NFAT-competing peptide VIVIT, we showed that NFAT activity is strongly required to promote VSMC proliferation. In conclusion, we provide the first evidence that increasing SERCA2a activity inhibits VSMC proliferation and balloon injury–induced neointima formation.


Circulation | 2011

Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy

Jean-Sébastien Hulot; Jérémy Fauconnier; Deepak Ramanujam; Antoine H. Chaanine; Fleur Cohen Aubart; Yassine Sassi; Sabine Merkle; Olivier Cazorla; Aude Ouillé; Morgan Dupuis; Lahouaria Hadri; Dongtak Jeong; Silke Mühlstedt; Joachim P. Schmitt; Attila Braun; Ludovic Benard; Youakim Saliba; Bernhard Laggerbauer; Bernhard Nieswandt; Alain Lacampagne; Roger J. Hajjar; Anne-Marie Lompré; Stefan Engelhardt

Background Cardiomyocytes (CM) utilize Ca2+ not only in excitation-contraction coupling (ECC), but also as a signaling molecule promoting for example cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in CM in the presence of the rapid and large Ca2+ fluctuations that occur during ECC. A potential route is store-operated Ca2+ entry (SOCE), a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). SOCE can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+-entry with respect to cardiac hypertrophy in vitro and in vivo.Background— Cardiomyocytes use Ca2+ not only in excitation-contraction coupling but also as a signaling molecule promoting, for example, cardiac hypertrophy. It is largely unclear how Ca2+ triggers signaling in cardiomyocytes in the presence of the rapid and large Ca2+ fluctuations that occur during excitation-contraction coupling. A potential route is store-operated Ca2+ entry, a drug-inducible mechanism for Ca2+ signaling that requires stromal interaction molecule 1 (STIM1). Store-operated Ca2+ entry can also be induced in cardiomyocytes, which prompted us to study STIM1-dependent Ca2+ entry with respect to cardiac hypertrophy in vitro and in vivo. Methods and Results— Consistent with earlier reports, we found drug-inducible store-operated Ca2+ entry in neonatal rat cardiomyocytes, which was dependent on STIM1. Although this STIM1-dependent, drug-inducible store-operated Ca2+ entry was only marginal in adult cardiomyocytes isolated from control hearts, it increased significantly in cardiomyocytes isolated from adult rats that had developed compensated cardiac hypertrophy after abdominal aortic banding. Moreover, we detected an inwardly rectifying current in hypertrophic cardiomyocytes that occurs under native conditions (ie, in the absence of drug-induced store depletion) and is dependent on STIM1. By manipulating its expression, we found STIM1 to be both sufficient and necessary for cardiomyocyte hypertrophy in vitro and in the adult heart in vivo. Stim1 silencing by adeno-associated viruses of serotype 9–mediated gene transfer protected rats from pressure overload–induced cardiac hypertrophy. Conclusion— By controlling a previously unrecognized sarcolemmal current, STIM1 promotes cardiac hypertrophy.


Circulation-heart Failure | 2013

AAV9.I-1c Delivered via Direct Coronary Infusion in a Porcine Model of Heart Failure Improves Contractility and Mitigates Adverse Remodeling

Kenneth Fish; Dennis Ladage; Yoshiaki Kawase; Ioannis Karakikes; Dongtak Jeong; Hung Ly; Kiyotake Ishikawa; Lahouaria Hadri; Lisa Tilemann; Jochen Müller-Ehmsen; R. Jude Samulski; Evangelia G. Kranias; Roger J. Hajjar

Background—Heart failure is characterized by impaired function and disturbed Ca2+ homeostasis. Transgenic increases in inhibitor-1 activity have been shown to improve Ca2 cycling and preserve cardiac performance in the failing heart. The aim of this study was to evaluate the effect of activating the inhibitor (I-1c) of protein phosphatase 1 (I-1) through gene transfer on cardiac function in a porcine model of heart failure induced by myocardial infarction. Methods and Results—Myocardial infarction was created by a percutaneous, permanent left anterior descending artery occlusion in Yorkshire Landrace swine (n=16). One month after myocardial infarction, pigs underwent intracoronary delivery of either recombinant adeno-associated virus type 9 carrying I-1c (n=8) or saline (n=6) as control. One month after myocardial infarction was created, animals exhibited severe heart failure demonstrated by decreased ejection fraction (46.4±7.0% versus sham 69.7±8.5%) and impaired (dP/dt)max and (dP/dt)min. Intracoronary injection of AAV9.I-1c prevented further deterioration of cardiac function and led to a decrease in scar size. Conclusions—In this preclinical model of heart failure, overexpression of I-1c by intracoronary in vivo gene transfer preserved cardiac function and reduced the scar size.


Circulation | 2013

Therapeutic Efficacy of AAV1.SERCA2a in Monocrotaline-Induced Pulmonary Arterial Hypertension

Lahouaria Hadri; Razmig Garo Kratlian; Ludovic Benard; Bradley A. Maron; Peter Dorfmüller; Dennis Ladage; Christophe Guignabert; Kiyotake Ishikawa; Jaume Aguero; Borja Ibanez; Irene C. Turnbull; Erik Kohlbrenner; Lifan Liang; Krisztina Zsebo; Marc Humbert; Jean-Sébastien Hulot; Yoshiaki Kawase; Roger J. Hajjar; Jane A. Leopold

Background— Pulmonary arterial hypertension (PAH) is characterized by dysregulated proliferation of pulmonary artery smooth muscle cells leading to (mal)adaptive vascular remodeling. In the systemic circulation, vascular injury is associated with downregulation of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and alterations in Ca2+ homeostasis in vascular smooth muscle cells that stimulate proliferation. We, therefore, hypothesized that downregulation of SERCA2a is permissive for pulmonary vascular remodeling and the development of PAH. Methods and Results— SERCA2a expression was decreased significantly in remodeled pulmonary arteries from patients with PAH and the rat monocrotaline model of PAH in comparison with controls. In human pulmonary artery smooth muscle cells in vitro, SERCA2a overexpression by gene transfer decreased proliferation and migration significantly by inhibiting NFAT/STAT3. Overexpresion of SERCA2a in human pulmonary artery endothelial cells in vitro increased endothelial nitric oxide synthase expression and activation. In monocrotaline rats with established PAH, gene transfer of SERCA2a via intratracheal delivery of aerosolized adeno-associated virus serotype 1 (AAV1) carrying the human SERCA2a gene (AAV1.SERCA2a) decreased pulmonary artery pressure, vascular remodeling, right ventricular hypertrophy, and fibrosis in comparison with monocrotaline-PAH rats treated with a control AAV1 carrying &bgr;-galactosidase or saline. In a prevention protocol, aerosolized AAV1.SERCA2a delivered at the time of monocrotaline administration limited adverse hemodynamic profiles and indices of pulmonary and cardiac remodeling in comparison with rats administered AAV1 carrying &bgr;-galactosidase or saline. Conclusions— Downregulation of SERCA2a plays a critical role in modulating the vascular and right ventricular pathophenotype associated with PAH. Selective pulmonary SERCA2a gene transfer may offer benefit as a therapeutic intervention in PAH.


Molecular Therapy | 2010

SERCA2a Gene Transfer Enhances eNOS Expression and Activity in Endothelial Cells

Lahouaria Hadri; Regis Bobe; Yoshiaki Kawase; Dennis Ladage; Kiyotake Ishikawa; Fabrice Atassi; Djamel Lebeche; Evangelia G. Kranias; Jane A. Leopold; Anne-Marie Lompré; Larissa Lipskaia; Roger J. Hajjar

Congestive heart failure (HF) is associated with impaired endothelium-dependent nitric oxide-mediated vasodilatation. The aim of this study was to examine the effects of sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase 2a (SERCA2a) gene transfer on endothelial function in a swine HF model. Two months after the creation of mitral regurgitation to induce HF, the animals underwent intracoronary injection of adeno-associated virus (AAV) carrying SERCA2a (n = 7) or saline (n = 6). At 4 months, coronary flow (CF) was measured in the mid-portion of the left anterior descending (LAD) artery. In the failing animals, CF was decreased significantly; SERCA2a gene transfer rescued CF to levels observed in sham-group [ml/min/g, 0.47 +/- 0.064 saline versus 0.89 +/- 0.116, SERCA2a; P < 0.05; 1.00 +/- 0. 185 sham P = NS (nonsignificant)]. In coronary arteries from HF animals, SERCA2a and endothelial isoform of nitric oxide synthase (eNOS) protein expression were decreased, but restored to normal levels by SERCA2a gene transfer. In human coronary artery endothelial cells (HCAECs), SERCA2a overexpression increased eNOS expression, phosphorylation, eNOS promoter activity, Ca(2+) storage capacity, and enhanced histamine-induced calcium oscillations, eNOS activity, and cyclic guanosine monophosphate (cGMP) production. Thus, SERCA2a gene transfer increases eNOS expression and activity by modulating calcium homeostasis to improve CF. These findings suggest that SERCA2a gene transfer improves vascular reactivity in the setting of HF.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model

Jaume Aguero; Kiyotake Ishikawa; Lahouaria Hadri; Carlos G. Santos-Gallego; Kenneth Fish; Nadjib Hammoudi; Antoine H. Chaanine; Samantha Torquato; Charbel Naim; Borja Ibanez; Daniel Pereda; Ana García-Álvarez; Valentin Fuster; Partho P. Sengupta; Jane A. Leopold; Roger J. Hajjar

In pulmonary hypertension (PH), right ventricular (RV) dysfunction and failure is the main determinant of a poor prognosis. We aimed to characterize RV structural and functional differences during adaptive RV remodeling and progression to RV failure in a large animal model of chronic PH. Postcapillary PH was created surgically in swine (n = 21). After an 8- to 14-wk follow-up, two groups were identified based on the development of overt heart failure (HF): PH-NF (nonfailing, n = 12) and PH-HF (n = 8). In both groups, invasive hemodynamics, pressure-volume relationships, and echocardiography confirmed a significant increase in pulmonary pressures and vascular resistance consistent with PH. Histological analysis also demonstrated distal pulmonary arterial (PA) remodeling in both groups. Diastolic dysfunction, defined by a steeper RV end-diastolic pressure-volume relationship and longitudinal strain, was found in the absence of HF as an early marker of RV remodeling. RV contractility was increased in both groups, and RV-PA coupling was preserved in PH-NF animals but impaired in the PH-HF group. RV hypertrophy was present in PH-HF, although there was evidence of increased RV fibrosis in both PH groups. In the PH-HF group, RV sarcoplasmic reticulum Ca(2+)-ATPase2a expression was decreased, and endoplasmic reticulum stress was increased. Aldosterone levels were also elevated in PH-HF. Thus, in the swine pulmonary vein banding model of chronic postcapillary PH, RV remodeling occurs at the structural, histological, and molecular level. Diastolic dysfunction and fibrosis are present in adaptive RV remodeling, whereas the onset of RV failure is associated with RV-PA uncoupling, defective calcium handling, and hyperaldosteronism.


Journal of Molecular and Cellular Cardiology | 2011

SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells

Regis Bobe; Lahouaria Hadri; Jose J. Lopez; Yassine Sassi; Fabrice Atassi; Ioannis Karakikes; Lifan Liang; Isabelle Limon; Anne-Marie Lompré; Stéphane N. Hatem; Roger J. Hajjar; Larissa Lipskaia

In blood vessels, tone is maintained by agonist-induced cytosolic Ca(2+) oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca(2+) followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca(2+) transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca(2+) storage capacity; 2) modified agonist-induced IP(3)R Ca(2+) release from steady-state to oscillatory mode (the frequency of agonist-induced IP(3)R Ca(2+) signal was 11.66 ± 1.40/100 s in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 s in control cells (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca(2+) transients have different effects on calcium-dependent physiological functions in smooth muscle cells.

Collaboration


Dive into the Lahouaria Hadri's collaboration.

Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Djamel Lebeche

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kiyotake Ishikawa

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lifan Liang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kawase

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elie R. Chemaly

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Irene C. Turnbull

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jane A. Leopold

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge