Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lai F. Bergeman is active.

Publication


Featured researches published by Lai F. Bergeman.


ACS Chemical Biology | 2014

Rapid kinetic characterization of glycosyl hydrolases based on oxime derivatization and nanostructure-initiator mass spectrometry (NIMS).

Kai Deng; Taichi E. Takasuka; Richard A. Heins; Xiaoliang Cheng; Lai F. Bergeman; Jian Shi; Ryan Aschenbrener; Sam Deutsch; Seema Singh; Kenneth L. Sale; Blake A. Simmons; Paul D. Adams; Anup K. Singh; Brian G. Fox; Trent R. Northen

Glycoside hydrolases (GHs) are critical to cycling of plant biomass in the environment, digestion of complex polysaccharides by the human gut microbiome, and industrial activities such as deployment of cellulosic biofuels. High-throughput sequencing methods show tremendous sequence diversity among GHs, yet relatively few examples from the over 150,000 unique domain arrangements containing GHs have been functionally characterized. Here, we show how cell-free expression, bioconjugate chemistry, and surface-based mass spectrometry can be used to study glycoside hydrolase reactions with plant biomass. Detection of soluble products is achieved by coupling a unique chemical probe to the reducing end of oligosaccharides in a stable oxime linkage, while the use of (13)C-labeled monosaccharide standards (xylose and glucose) allows quantitation of the derivatized glycans. We apply this oxime-based nanostructure-initiator mass spectrometry (NIMS) method to characterize the functional diversity of GHs secreted by Clostridium thermocellum, a model cellulolytic organism. New reaction specificities are identified, and differences in rates and yields of individual enzymes are demonstrated in reactions with biomass substrates. Numerical analyses of time series data suggests that synergistic combinations of mono- and multifunctional GHs can decrease the complexity of enzymes needed for the hydrolysis of plant biomass during the production of biofuels.


Journal of Biological Chemistry | 2015

Active Site and Laminarin Binding in Glycoside Hydrolase Family 55

Christopher M. Bianchetti; Taichi E. Takasuka; Sam Deutsch; Hannah S. Udell; Eric Yik; Lai F. Bergeman; Brian G. Fox

Background: SacteLam55A is a GH55 enzyme from highly cellulolytic Streptomyces sp. SirexAA-E. Results: Substrate-bound structures identify residues involved in binding, catalysis, enforcement of reaction specificity, and possibly processivity. Conclusion: Natural GH55 are exo-β-1,3-glucanases with a broad range of temperature and pH optima. Significance: Experimental annotation of GH phylogenetic space by use of bioinformatics, high throughput cell-free translation, biochemical assay, and structure determination is feasible. The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.


Methods of Molecular Biology | 2014

Cell-Free Translation of Biofuel Enzymes

Taichi E. Takasuka; Johnnie A. Walker; Lai F. Bergeman; Kirk A. Vander Meulen; Shin-ichi Makino; Nathaniel L. Elsen; Brian G. Fox

In nature, bacteria and fungi are able to utilize recalcitrant plant materials by secreting a diverse set of enzymes. While genomic sequencing efforts offer exhaustive lists of genes annotated as potential polysaccharide-degrading enzymes, biochemical and functional characterizations of the encoded proteins are still needed to realize the full potential of this natural genomic diversity. This chapter outlines an application of wheat germ cell-free translation to the study of biofuel enzymes using genes from Clostridium thermocellum, a model cellulolytic organism. Since wheat germ extract lacks enzymatic activities that can hydrolyze insoluble polysaccharide substrates and is likewise devoid of enzymes that consume the soluble sugar products, the cell-free translation reactions provide a clean background for production and study of the reactions of biofuel enzymes. Examples of assays performed with individual enzymes or with small sets of enzymes obtained directly from cell-free translation are provided.


Proteins | 2014

Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces sp. SirexAA-E

Taichi E. Takasuka; Christopher M. Bianchetti; Yuki Tobimatsu; Lai F. Bergeman; John Ralph; Brian G. Fox

SACTE_5457 is secreted by Streptomyces sp. SirexAA‐E, a highly cellulolytic actinobacterium isolated from a symbiotic community composed of insects, fungi, and bacteria. Here we report the 1.84 Å resolution crystal structure and functional characterization of SACTE_5457. This enzyme is a member of the glycosyl hydrolase family 46 and is composed of two α‐helical domains that are connected by an α‐helical linker. The catalytic residues (Glu74 and Asp92) are separated by 10.3 Å, matching the distance predicted for an inverting hydrolysis reaction. Normal mode analysis suggests that the connecting α‐helix is flexible and allows the domain motion needed to place active site residues into an appropriate configuration for catalysis. SACTE_5457 does not react with chitin, but hydrolyzes chitosan substrates with an ∼4‐fold improvement in kcat/KM as the percentage of acetylation and the molecular weights decrease. Analysis of the time dependence of product formation shows that oligosaccharides with degree of polymerization <4 are not hydrolyzed. By combining the results of substrate docking to the X‐ray structure and end‐product analysis, we deduce that SACTE_5457 preferentially binds substrates spanning the −2 to +2 sugar binding subsites, and that steric hindrance prevents binding of N‐acetyl‐d‐glucosamine in the +2 subsite and may weakly interfere with binding of N‐acetyl‐d‐glucosamine in the +1 subsites. A proposal for how these constraints account for the observed product distributions is provided. Proteins 2014; 82:1245–1257.


Journal of Structural and Functional Genomics | 2015

Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies

David J. Aceti; Craig A. Bingman; Russell L. Wrobel; Ronnie O. Frederick; Shin-ichi Makino; Karl W. Nichols; Sarata C. Sahu; Lai F. Bergeman; Paul G. Blommel; Claudia C. Cornilescu; Katarzyna A. Gromek; Kory D. Seder; Soyoon Hwang; John G. Primm; Grzegorz Sabat; Frank C. Vojtik; Brian F. Volkman; Zsolt Zolnai; George N. Phillips; John L. Markley; Brian G. Fox

Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or 1H–15N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.


Frontiers in Bioengineering and Biotechnology | 2015

Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS

Kai Deng; Joel M. Guenther; Jian Gao; Benjamin P. Bowen; Huu Tran; Vimalier Reyes-Ortiz; Xiaoliang Cheng; Noppadon Sathitsuksanoh; Richard A. Heins; Taichi E. Takasuka; Lai F. Bergeman; Henrik M. Geertz-Hansen; Samuel Deutsch; Dominique Loque; Kenneth L. Sale; Blake A. Simmons; Paul D. Adams; Anup K. Singh; Brian G. Fox; Trent R. Northen

Cost-effective hydrolysis of biomass into sugars for biofuel production requires high-performance low-cost glycoside hydrolase (GH) cocktails that are active under demanding process conditions. Improving the performance of GH cocktails depends on knowledge of many critical parameters, including individual enzyme stabilities, optimal reaction conditions, kinetics, and specificity of reaction. With this information, rate- and/or yield-limiting reactions can be potentially improved through substitution, synergistic complementation, or protein engineering. Given the wide range of substrates and methods used for GH characterization, it is difficult to compare results across a myriad of approaches to identify high performance and synergistic combinations of enzymes. Here, we describe a platform for systematic screening of GH activities using automatic biomass handling, bioconjugate chemistry, robotic liquid handling, and nanostructure-initiator mass spectrometry (NIMS). Twelve well-characterized substrates spanning the types of glycosidic linkages found in plant cell walls are included in the experimental workflow. To test the application of this platform and substrate panel, we studied the reactivity of three engineered cellulases and their synergy of combination across a range of reaction conditions and enzyme concentrations. We anticipate that large-scale screening using the standardized platform and substrates will generate critical datasets to enable direct comparison of enzyme activities for cocktail design.


PLOS ONE | 2014

Biochemical properties and atomic resolution structure of a proteolytically processed β-mannanase from cellulolytic Streptomyces sp. SirexAA-E.

Taichi E. Takasuka; Justin F. Acheson; Christopher M. Bianchetti; Ben M. Prom; Lai F. Bergeman; Adam J. Book; Cameron R. Currie; Brian G. Fox

β-mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.


Biotechnology for Biofuels | 2017

Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

Johnnie A. Walker; Sivakumar Pattathil; Lai F. Bergeman; Emily T. Beebe; Kai Deng; Maryam Mirzai; Trent R. Northen; Michael G. Hahn; Brian G. Fox

BackgroundGlycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions.ResultsSingle, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss of specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides.ConclusionsThe identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.


Protein Science | 2010

Rapid, robotic, small-scale protein production for NMR screening and structure determination

Davin R. Jensen; Christopher Woytovich; Margie Li; Petar Duvnjak; Michael S. Cassidy; Ronnie O. Frederick; Lai F. Bergeman; Francis C. Peterson; Brian F. Volkman

Three‐dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time‐consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi‐automated protocol for isotopically‐labeled protein production using the Maxwell‐16, a commercially available bench top robot, that allows for single‐step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different 15N‐labeled proteins, accelerating the validation process by more than 10‐fold. The yield from a single channel of the Maxwell‐16 is sufficient for acquisition of a high‐quality 2D 1H‐15N‐HSQC spectrum using a 3‐mm sample cell and 5‐mm cryogenic NMR probe. Maxwell‐16 screening of a control group of proteins reproduced previous validation results from conventional small‐scale expression screening and large‐scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par‐3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U‐15N,13C] protein prepared using the Maxwell‐16. This novel semi‐automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale‐up steps.


Frontiers in Bioengineering and Biotechnology | 2015

Use of nanostructure-initiator mass spectrometry to deduce selectivity of reaction in glycoside hydrolases

Kai Deng; Taichi E. Takasuka; Christopher M. Bianchetti; Lai F. Bergeman; Paul D. Adams; Trent R. Northen; Brian G. Fox

Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

Collaboration


Dive into the Lai F. Bergeman's collaboration.

Top Co-Authors

Avatar

Brian G. Fox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Taichi E. Takasuka

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Kai Deng

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Adams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Trent R. Northen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anup K. Singh

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Ronnie O. Frederick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian F. Volkman

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge