Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lance Parsons is active.

Publication


Featured researches published by Lance Parsons.


PLOS Biology | 2013

The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes

Estienne C. Swart; John R. Bracht; Vincent Magrini; Patrick Minx; Xiao Chen; Yi Zhou; Jaspreet S. Khurana; Aaron David Goldman; Mariusz Nowacki; Klaas Schotanus; Seolkyoung Jung; Robert S. Fulton; Amy Ly; Sean McGrath; Kevin Haub; Jessica L. Wiggins; Donna Storton; John C. Matese; Lance Parsons; Wei-Jen Chang; Michael S. Bowen; Nicholas A. Stover; Thomas A. Jones; Sean R. Eddy; Glenn Herrick; Thomas G. Doak; Richard Wilson; Elaine R. Mardis; Laura F. Landweber

With more chromosomes than any other sequenced genome, the macronuclear genome of Oxytricha trifallax has a unique and complex architecture, including alternative fragmentation and predominantly single-gene chromosomes.


Journal of Virology | 2010

Sequence Variability in Clinical and Laboratory Isolates of Herpes Simplex Virus 1 Reveals New Mutations

Moriah L. Szpara; Lance Parsons; Lynn W. Enquist

ABSTRACT Herpes simplex virus 1 (HSV-1) is a well-adapted human pathogen that can invade the peripheral nervous system and persist there as a lifelong latent infection. Despite their ubiquity, only one natural isolate of HSV-1 (strain 17) has been sequenced. Using Illumina high-throughput sequencing of viral DNA, we obtained the genome sequences of both a laboratory strain (F) and a low-passage clinical isolate (H129). These data demonstrated the extent of interstrain variation across the entire genome of HSV-1 in both coding and noncoding regions. We found many amino acid differences distributed across the proteome of the new strain F sequence and the previously known strain 17, demonstrating the spectrum of variability among wild-type HSV-1 proteins. The clinical isolate, strain H129, displays a unique anterograde spread phenotype for which the causal mutations were completely unknown. We have defined the sequence differences in H129 and propose a number of potentially causal genes, including the neurovirulence protein ICP34.5 (RL1). Further studies will be required to demonstrate which change(s) is sufficient to recapitulate the spread defect of strain H129. Unexpectedly, these data also revealed a frameshift mutation in the UL13 kinase in our strain F isolate, demonstrating how deep genome sequencing can reveal the full complement of background mutations in any given strain, particularly those passaged or plaque purified in a laboratory setting. These data increase our knowledge of sequence variation in large DNA viruses and demonstrate the potential of deep sequencing to yield insight into DNA genome evolution and the variation among different pathogen isolates.


PLOS Pathogens | 2011

A Wide Extent of Inter-Strain Diversity in Virulent and Vaccine Strains of Alphaherpesviruses

Moriah L. Szpara; Yolanda R. Tafuri; Lance Parsons; S. Rafi Shamim; Kevin J. Verstrepen; Matthieu Legendre; Lynn W. Enquist

Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate

Sanford J. Silverman; Allegra A. Petti; Nikolai Slavov; Lance Parsons; Ryan Briehof; Stephan Y. Thiberge; Daniel Zenklusen; Saumil J. Gandhi; Daniel R. Larson; Robert H. Singer; David Botstein

Oscillations in patterns of expression of a large fraction of yeast genes are associated with the “metabolic cycle,” usually seen only in prestarved, continuous cultures of yeast. We used FISH of mRNA in individual cells to test the hypothesis that these oscillations happen in single cells drawn from unsynchronized cultures growing exponentially in chemostats. Gene-expression data from synchronized cultures were used to predict coincident appearance of mRNAs from pairs of genes in the unsynchronized cells. Quantitative analysis of the FISH results shows that individual unsynchronized cells growing slowly because of glucose limitation or phosphate limitation show the predicted oscillations. We conclude that the yeast metabolic cycle is an intrinsic property of yeast metabolism and does not depend on either synchronization or external limitation of growth by the carbon source.


G3: Genes, Genomes, Genetics | 2013

Mutation Rates, Spectra, and Genome-Wide Distribution of Spontaneous Mutations in Mismatch Repair Deficient Yeast

Gregory I. Lang; Lance Parsons; Alison E. Gammie

DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.


Journal of Virology | 2011

Herpes Simplex Virus 1 pUL34 Plays a Critical Role in Cell-to-Cell Spread of Virus in Addition to Its Role in Virus Replication

Alison C. Haugo; Moriah L. Szpara; Lance Parsons; Lynn W. Enquist; Richard J. Roller

ABSTRACT Herpes simplex virus (HSV) pUL34 plays a critical role in virus replication by mediating egress of nucleocapsids from the infected cell nucleus. We have identified a mutation in pUL34 (Y68A) that produces a major defect in virus replication and impaired nuclear egress but also profoundly inhibits cell-to-cell spread and trafficking of gE. Virion release to the extracellular medium is not affected by the Y68A mutation, indicating that the mutation specifically inhibits cell-to-cell spread. We isolated extragenic suppressors of the Y68A plaque formation defect and mapped them by a combination of high-throughput Illumina sequencing and PCR-based screening. We found that suppression is highly correlated with a nonsense mutation in the US9 gene, which plays a critical role in cell-to-cell spread of HSV-1 in neurons. The US9 mutation alone is not sufficient to suppress the Y68A spread phenotype, indicating a likely role for multiple viral factors.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Extrachromosomal circular DNA is common in yeast

Henrik D. Møller; Lance Parsons; Tue Sparholt Jørgensen; David Botstein; Birgitte Regenberg

Significance We performed a screen for extrachromosomal circular DNAs containing segments of genomic yeast DNA. We found 1,756 such extrachromosomal circular DNAs containing about 23% of the total yeast genomic information. The abundance of these circular forms of genomic DNA suggests that eccDNA formation might be a common mutation that can arise in any part of the genome, and not in only a few special loci. We propose that eccDNAs may be precursors to the copy number variation in eukaryotic genomes characteristic of both the evolutionary process and cancer progression. Examples of extrachromosomal circular DNAs (eccDNAs) are found in many organisms, but their impact on genetic variation at the genome scale has not been investigated. We mapped 1,756 eccDNAs in the Saccharomyces cerevisiae genome using Circle-Seq, a highly sensitive eccDNA purification method. Yeast eccDNAs ranged from an arbitrary lower limit of 1 kb up to 38 kb and covered 23% of the genome, representing thousands of genes. EccDNA arose both from genomic regions with repetitive sequences ≥15 bases long and from regions with short or no repetitive sequences. Some eccDNAs were identified in several yeast populations. These eccDNAs contained ribosomal genes, transposon remnants, and tandemly repeated genes (HXT6/7, ENA1/2/5, and CUP1-1/-2) that were generally enriched on eccDNAs. EccDNAs seemed to be replicated and 80% contained consensus sequences for autonomous replication origins that could explain their maintenance. Our data suggest that eccDNAs are common in S. cerevisiae, where they might contribute substantially to genetic variation and evolution.


Mbio | 2015

Rapid Genome Assembly and Comparison Decode Intrastrain Variation in Human Alphaherpesviruses

Lance Parsons; Yolanda R. Tafuri; Jacob T. Shreve; Christopher D. Bowen; Mackenzie M. Shipley; Lynn W. Enquist; Moriah L. Szpara

ABSTRACT Herpes simplex virus (HSV) is a widespread pathogen that causes epithelial lesions with recurrent disease that manifests over a lifetime. The lifelong aspect of infection results from latent viral infection of neurons, a reservoir from which the virus reactivates periodically. Recent work has demonstrated the breadth of genetic variation in globally distributed HSV strains. However, the amount of variation or capacity for mutation within one strain has not been well studied. Here we developed and applied a streamlined new approach for assembly and comparison of large DNA viral genomes such as HSV-1. This viral genome assembly (VirGA) workflow incorporates a combination of de novo assembly, alignment, and annotation strategies to automate the generation of draft genomes for large viruses. We applied this approach to quantify the amount of variation between clonal derivatives of a common parental virus stock. In addition, we examined the genetic basis for syncytial plaque phenotypes displayed by a subset of these strains. In each of the syncytial strains, we found an identical DNA change, affecting one residue in the gB (UL27) fusion protein. Since these identical mutations could have appeared after extensive in vitro passaging, we applied the VirGA sequencing and comparison approach to two clinical HSV-1 strains isolated from the same patient. One of these strains was syncytial upon first culturing; its sequence revealed the same gB mutation. These data provide insight into the extent and origin of genome-wide intrastrain HSV-1 variation and present useful methods for expansion to in vivo patient infection studies. IMPORTANCE Herpes simplex virus (HSV) infects more than 70% of adults worldwide, causing epithelial lesions and recurrent disease that manifests over a lifetime. Prior work has demonstrated that HSV strains vary from country to country and between individuals. However, the amount of variation within one strain has not been well studied. To address this, we developed a new approach for viral genome assembly (VirGA) and analysis. We used this approach to quantify the amount of variation between sister clones of a common parental virus stock and to determine the basis of a unique fusion phenotype displayed by several variants. These data revealed that while sister clones of one HSV stock are more than 98% identical, these variants harbor enough genetic differences to change their observed characteristics. Comparative genomics approaches will allow us to explore the impacts of viral inter- and intrastrain diversity on drug and vaccine efficacy. Herpes simplex virus (HSV) infects more than 70% of adults worldwide, causing epithelial lesions and recurrent disease that manifests over a lifetime. Prior work has demonstrated that HSV strains vary from country to country and between individuals. However, the amount of variation within one strain has not been well studied. To address this, we developed a new approach for viral genome assembly (VirGA) and analysis. We used this approach to quantify the amount of variation between sister clones of a common parental virus stock and to determine the basis of a unique fusion phenotype displayed by several variants. These data revealed that while sister clones of one HSV stock are more than 98% identical, these variants harbor enough genetic differences to change their observed characteristics. Comparative genomics approaches will allow us to explore the impacts of viral inter- and intrastrain diversity on drug and vaccine efficacy.


Journal of Visualized Experiments | 2013

Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.

R. Scott McIsaac; Sanford J. Silverman; Lance Parsons; Ping Xu; Ryan Briehof; Megan N. McClean; David Botstein

The Fluorescence in situ Hybridization (FISH) method allows one to detect nucleic acids in the native cellular environment. Here we provide a protocol for using FISH to quantify the number of mRNAs in single yeast cells. Cells can be grown in any condition of interest and then fixed and made permeable. Subsequently, multiple single-stranded deoxyoligonucleotides conjugated to fluorescent dyes are used to label and visualize mRNAs. Diffraction-limited fluorescence from single mRNA molecules is quantified using a spot-detection algorithm to identify and count the number of mRNAs per cell. While the more standard quantification methods of northern blots, RT-PCR and gene expression microarrays provide information on average mRNAs in the bulk population, FISH facilitates both the counting and localization of these mRNAs in single cells at single-molecule resolution.


G3: Genes, Genomes, Genetics | 2016

Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.

Henrik D. Møller; Camilla Eggert Larsen; Lance Parsons; Anders J. Hansen; Birgitte Regenberg; Tobias Mourier

Extrachromosomal circular DNA (eccDNA) derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ) of long terminal repeats (LTRs) flanking Ty elements, by Ty autointegration, or by LTR–LTR recombination. By performing an in-depth investigation of sequence reads stemming from Ty eccDNAs obtained from populations of Saccharomyces cerevisiae S288c, we find that eccDNAs predominantly correspond to full-length Ty1 elements. Analyses of sequence junctions reveal no signs of NHEJ or autointegration events. We detect recombination junctions that are consistent with yeast Ty eccDNAs being generated through recombination events within the genome. This opens the possibility that retrotransposable elements could move around in the genome without an RNA intermediate directly through DNA circularization.

Collaboration


Dive into the Lance Parsons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moriah L. Szpara

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge