Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lang Tran is active.

Publication


Featured researches published by Lang Tran.


Nature | 2006

Safe handling of nanotechnology

Andrew D. Maynard; Robert J. Aitken; Tilman Butz; Vicki L. Colvin; Ken Donaldson; Günter Oberdörster; Martin A. Philbert; John L. Ryan; Anthony Seaton; Vicki Stone; Sally S. Tinkle; Lang Tran; Nigel J. Walker; David B. Warheit

The pursuit of responsible nanotechnologies can be tackled through a series of grand challenges, argue Andrew D. Maynard and his co-authors.Take fiveThe spectre of possible harm — real or imagined — is threatening to slow the development of nanotechnology. In a Commentary this week a group of nanotechnologists outlines a series of five “grand challenges”. If they and their colleagues can rise to these challenges — which include development of new ways of measuring exposure to nanomaterials and assessing the health and environmental impact of that exposure — the true extent of any risks involved should become clear.


Particle and Fibre Toxicology | 2005

Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

Ken Donaldson; Lang Tran; Luis A. Jimenez; Rodger Duffin; David E. Newby; Nicholas L. Mills; William MacNee; Vicki Stone

This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.


Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung | 2002

The pulmonary toxicology of ultrafine particles.

Ken Donaldson; David M. Brown; Anna Clouter; Rodger Duffin; William MacNee; Louise Renwick; Lang Tran; Vicki Stone

Ultrafine particles are a component of air pollution, derived from primary combustion sources, and so we have undertaken a programme of study on the mechanisms of lung injury caused by ultrafine particles. Ultrafine particles made of low-solubility, low-toxicity materials are more inflammogenic in the rat lung than fine respirable, particles made from the same material. Ultrafine particles can cause inflammation via processes independent of the release of transition metals, as shown by the fact that soluble products from ultrafine carbon black have no ability to cause inflammation. The property that drives the greater inflammogenicity of ultrafines is unknown but very likely relates to particle surface area and involves oxidative stress. Increases in intracellular Ca(++) may underlie the cellular effects of ultrafines, although the mechanism whereby ultrafines have this effect is not understood. However, increased influx of Ca(++) into macrophages occurs via the membrane Ca(++) channels following contact with ultrafine particles, and involves oxidative stress. Increased Ca(++) in macrophages exposed to ultrafines can lead to the transcription of key pro-inflammatory genes such as TNFalpha. Ultrafine particles can also impair the ability of macrophages to phagocytose and clear other particles, and this may be pro-inflammogenic.


Occupational and Environmental Medicine | 2007

The Pro-Inflammatory Effects Of Low toxicity low solubility Particles, Nanoparticles and Fine Particles, on Epithelial Cells In Vitro: the Role of Surface Area.

Claire Monteiller; Lang Tran; William MacNee; Steve P Faux; A. D. Jones; Brian Miller; Ken Donaldson

Objective: Rats exposed to high airborne mass concentrations of low-solubility low-toxicity particles (LSLTP) have been reported to develop lung disease such as fibrosis and lung cancer. These particles are regulated on a mass basis in occupational settings, but mass might not be the appropriate metric as animal studies have shown that nanoparticles (ultrafine particles) produce a stronger adverse effect than fine particles when delivered on an equal mass basis. Methods: This study investigated whether the surface area is a better descriptor than mass of LSLTP of their ability to stimulate pro-inflammatory responses in vitro. In a human alveolar epithelial type II-like cell line, A549, we measured interleukin (IL)-8 mRNA, IL8 protein release and glutathione (GSH) depletion as markers of pro-inflammatory effects and oxidative stress after treatment with a range of LSLTP (fine and nanoparticles) and DQ12 quartz, a particle with a highly reactive surface. Results: In all the assays, nanoparticle preparations of titanium dioxide (TiO2-np) and of carbon black (CB-np) produced much stronger pro-inflammatory responses than the same mass dose of fine TiO2 and CB. The results of the GSH assay confirmed that oxidative stress was involved in the response to all the particles, and two ultra-fine metal dusts (cobalt and nickel) produced GSH depletion similar to TiO2-np, for similar surface-area dose. As expected, DQ12 quartz was more inflammatory than the low toxicity dusts, on both a mass and surface-area basis. Conclusion: Dose–response relationships observed in the in vitro assays appeared to be directly comparable with dose–response relationships in vivo when the doses were similarly standardised. Both sets of data suggested a threshold in dose measured as surface area of particles relative to the surface area of the exposed cells, at around 1–10 cm2/cm2. These findings are consistent with the hypothesis that surface area is a more appropriate dose metric than mass for the pro-inflammatory effects of LSLTP in vitro and in vivo, and consequently that the high surface area of nanoparticles is a key factor in their inflammogenicity.


Inhalation Toxicology | 2007

Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity

Rodger Duffin; Lang Tran; David M. Brown; Vicki Stone; Ken Donaldson

Different particle types cause excessive lung inflammation that is thought to play a role in the various types of pathology they produce. Recently attention has been focused on nanoparticles due to their presence in environmental particulate air pollution, their use and exposure in occupational settings, and their potential use in nanotechnology and novel therapeutics. We have shown previously that the surface area metric drives the overload response. We have instilled a number of low-toxicity dusts of various particle sizes and assessed neutrophil influx into the lung at 18–24 h postinstillation. The extent of inflammation was demonstrated as being a function not of the mass dose instilled but interestingly of the surface area dose instilled. Since low-toxicity nanoparticles present a “special” case of high surface area, they are relatively inflammogenic. We tested whether we could use this approach to model the reactivity of highly toxic dusts. Rats were instilled with either DQ12 quartz or aluminum lactate-treated DQ12 and, as anticipated, the high specific surface toxicity of DQ12 meant that it was much more inflammogenic (63 times more) than the surface area alone would have predicted. By contrast, aluminum lactate-treated DQ12 fell into the line of “low-toxicity” dusts. In addition, as an in vitro testing alternative to that of in vivo testing, interleukin (IL)-8 production in A549 cells exposed to the panel of various particles clearly demonstrated the ability to also identify a relationship between surface area dose and reactivity. These approaches present the possibility of modelling potential toxicity of nanoparticles and nuisance dusts based on the inflammatory response of a given instilled surface area dose.


Journal of the Royal Society Interface | 2010

Nanoparticles, human health hazard and regulation.

Anthony Seaton; Lang Tran; Robert J. Aitken; Ken Donaldson

New developments in technology usually entail some hazard as well as advantage to a society. Hazard of a material translates into risk by exposure of humans and/or their environment to the agent in question, and risk is reduced by control of exposure, usually guided by regulation based on understanding of the mechanisms of harm. We illustrate risks relating to the causation of diseases associated with exposure to aerosols of combustion particles and asbestos, leading to paradigms of particle toxicity, and discuss analogies with potential exposure to manufactured nanoparticles (NPs). We review the current understanding of the hazard of NPs derived from the new science of nanotoxicology and the limited research to date into human exposure to these particles. We identify gaps in knowledge relating to the properties of NPs that might determine toxicity and in understanding the most appropriate ways both to measure this in the laboratory and to assess it in the workplace. Nevertheless, we point out that physical principles governing the behaviour of such particles allow determination of practical methods of protecting those potentially exposed. Finally, we discuss the early steps towards regulation and the difficulties facing regulators in controlling potentially harmful exposures in the absence of sufficient scientific evidence.


Inhalation Toxicology | 2008

Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - A case study

Barry Park; Ken Donaldson; Rodger Duffin; Lang Tran; Frank J. Kelly; Ian Mudway; Jean-Paul Morin; Robert Guest; Peter Jenkinson; Zissis Samaras; Myrsini Giannouli; Haris Kouridis; Patricia Martin

Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO2), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems.


Particle and Fibre Toxicology | 2014

ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy

Vicki Stone; Stefano Pozzi-Mucelli; Lang Tran; Karin Aschberger; Stefania Sabella; Ulla Vogel; Craig A. Poland; Dominique Balharry; Teresa F. Fernandes; Stefania Gottardo; Steven M. Hankin; Mark G. J. Hartl; Nanna B. Hartmann; Danial Hristozov; Kerstin Hund-Rinke; Helinor Johnston; Antonio Marcomini; Oliver Panzer; Davide Roncato; Anne T. Saber; Håkan Wallin; Janeck J. Scott-Fordsmand

BackgroundTo assess the risk of all nanomaterials (NMs) on a case-by-case basis is challenging in terms of financial, ethical and time resources. Instead a more intelligent approach to knowledge gain and risk assessment is required.MethodsA framework of future research priorities was developed from the accorded opinion of experts covering all major stake holder groups (government, industry, academia, funders and NGOs). It recognises and stresses the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling approaches as key components of the current and future risk assessment of NMs.ResultsThe framework for future research has been developed from the opinions of over 80 stakeholders, that describes the research priorities for effective development of an intelligent testing strategy (ITS) to allow risk evaluation of NMs. In this context, an ITS is a process that allows the risks of NMs to be assessed accurately, effectively and efficiently, thereby reducing the need to test NMs on a case-by-case basis.For each of the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling, key-priority research areas are described via a series of stepping stones, or hexagon diagrams structured into a time perspective. Importantly, this framework is flexible, allowing individual stakeholders to identify where their own activities and expertise are positioned within the prioritisation pathway and furthermore to identify how they can effectively contribute and structure their work accordingly. In other words, the prioritisation hexagon diagrams provide a tool that individual stakeholders can adapt to meet their own particular needs and to deliver an ITS for NMs risk assessment. Such an approach would, over time, reduce the need for testing by increasing the reliability and sophistication of in silico approaches.The manuscript includes an appraisal of how this framework relates to the current risk assessment approaches and how future risk assessment could adapt to accommodate these new approaches. A full report is available in electronic format (pdf) at http://www.nano.hw.ac.uk/research-projects/itsnano.html.ConclusionITS-NANO has delivered a detailed, stakeholder driven and flexible research prioritisation (or strategy) tool, which identifies specific research needs, suggests connections between areas, and frames this in a time-perspective.


PLOS ONE | 2015

Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: First steps towards an intelligent testing strategy

Lucian Farcal; Fernando T. Andón; Luisana Di Cristo; Bianca Maria Rotoli; Ovidio Bussolati; Enrico Bergamaschi; Agnieszka Mech; Nanna B. Hartmann; Kirsten Rasmussen; Juan Riego-Sintes; Jessica Ponti; Agnieszka Kinsner-Ovaskainen; François Rossi; Agnes G. Oomen; Peter A. Bos; Rui Chen; Ru Bai; Chunying Chen; Louise Rocks; Norma Fulton; Bryony Ross; Gary R Hutchison; Lang Tran; Sarah Mues; Rainer Ossig; Jürgen Schnekenburger; Luisa Campagnolo; Lucia Vecchione; Antonio Pietroiusti; Bengt Fadeel

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.


Critical Reviews in Toxicology | 2013

Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges

Helinor Johnston; Giulio Pojana; Stefano Zuin; Nicklas Raun Jacobsen; Peter Møller; Steffen Loft; Manuela Semmler-Behnke; Catherine McGuiness; Dominique Balharry; Antonio Marcomini; Håkan Wallin; Wolfgang G. Kreyling; Ken Donaldson; Lang Tran; Vicki Stone

PARTICLE_RISK was one of the first multidisciplinary projects funded by the European Commission’s Framework Programme that was responsible for evaluating the implications of nanomaterial (NM) exposure on human health. This project was the basis for this review which identifies the challenges that exist within the assessment of NM risk. We have retrospectively reflected on the findings of completed nanotoxicology studies to consider what progress and advances have been made within the risk assessment of NMs, as well as discussing the direction that nanotoxicology research is taking and identifying the limitations and failings of existing research. We have reflected on what commonly encountered challenges exist and explored how these issues may be resolved. In particular, the following is discussed (i) NM selection (ii) NM physico-chemical characterisation; (iii) NM dispersion; (iv) selection of relevant doses and concentrations; (v) identification of relevant models, target sites and endpoints; (vi) development of alternatives to animal testing; and (vii) NM risk assessment. These knowledge gaps are relatively well recognised by the scientific community and recommendations as to how they may be overcome in the future are provided. It is hoped that this will help develop better defined hypothesis driven research in the future that will enable comprehensive risk assessments to be conducted for NMs. Importantly, the nanotoxicology community has responded and adapted to advances in knowledge over recent years to improve the approaches used to assess NM hazard, exposure and risk. It is vital to learn from existing information provided by ongoing or completed studies to avoid unnecessary duplication of effort, and to offer guidance on aspects of the experimental design that should be carefully considered prior to the start of a new study.

Collaboration


Dive into the Lang Tran's collaboration.

Top Co-Authors

Avatar

Vicki Stone

Heriot-Watt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alwyn Fernandes

Central Science Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Loizou

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Shaun White

Central Science Laboratory

View shared research outputs
Top Co-Authors

Avatar

David R. Bell

European Chemicals Agency

View shared research outputs
Top Co-Authors

Avatar

Martin Rose

Food and Environment Research Agency

View shared research outputs
Top Co-Authors

Avatar

Tao Jiang

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge