Larisa N. Soldatova
Brunel University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Larisa N. Soldatova.
Science | 2009
Ross D. King; Jeremy John Rowland; Stephen G. Oliver; Michael Young; Wayne Aubrey; Emma Louise Byrne; Maria Liakata; Magdalena Markham; Pınar Pir; Larisa N. Soldatova; Andrew Sparkes; Kenneth Edward Whelan; Amanda Clare
The basis of science is the hypothetico-deductive method and the recording of experiments in sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,” which advances the automation of both. Adam has autonomously generated functional genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses by using laboratory automation. We have confirmed Adams conclusions through manual experiments. To describe Adams research, we have developed an ontology and logical language. The resulting formalization involves over 10,000 different research units in a nested treelike structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical description. This formalization describes how a machine contributed to scientific knowledge.
Journal of Biomedical Semantics | 2010
Ryan R. Brinkman; Mélanie Courtot; Dirk Derom; Jennifer Fostel; Yongqun He; Phillip Lord; James Malone; Helen Parkinson; Bjoern Peters; Philippe Rocca-Serra; Alan Ruttenberg; Susanna-Assunta Sansone; Larisa N. Soldatova; Christian J. Stoeckert; Jessica A. Turner; Jie Zheng
BackgroundExperimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval.ResultsThe Ontology for Biomedical Investigations (OBI), developed as a global, cross-community effort, provides a resource that represents biomedical investigations in an explicit and integrative framework. Here we detail three real-world applications of OBI, provide detailed modeling information and explain how to use OBI.ConclusionWe demonstrate how OBI can be applied to different biomedical investigations to both facilitate interpretation of the experimental process and increase the computational processing and integration within the Semantic Web. The logical definitions of the entities involved allow computers to unambiguously understand and integrate different biological experimental processes and their relevant components.AvailabilityOBI is available at http://purl.obolibrary.org/obo/obi/2009-11-02/obi.owl
Journal of the Royal Society Interface | 2006
Larisa N. Soldatova; Ross D. King
The formal description of experiments for efficient analysis, annotation and sharing of results is a fundamental part of the practice of science. Ontologies are required to achieve this objective. A few subject-specific ontologies of experiments currently exist. However, despite the unity of scientific experimentation, no general ontology of experiments exists. We propose the ontology EXPO to meet this need. EXPO links the SUMO (the Suggested Upper Merged Ontology) with subject-specific ontologies of experiments by formalizing the generic concepts of experimental design, methodology and results representation. EXPO is expressed in the W3C standard ontology language OWL-DL. We demonstrate the utility of EXPO and its ability to describe different experimental domains, by applying it to two experiments: one in high-energy physics and the other in phylogenetics. The use of EXPO made the goals and structure of these experiments more explicit, revealed ambiguities, and highlighted an unexpected similarity. We conclude that, EXPO is of general value in describing experiments and a step towards the formalization of science.
Nature Biotechnology | 2005
Larisa N. Soldatova; Ross D. King
The failure of many bio-ontologies to follow international standards for ontology design and description is hampering their application and threatens to restrict their future use.
intelligent systems in molecular biology | 2006
Larisa N. Soldatova; Amanda Clare; Andrew Charles Sparkes; Ross D. King
MOTIVATION A Robot Scientist is a physically implemented robotic system that can automatically carry out cycles of scientific experimentation. We are commissioning a new Robot Scientist designed to investigate gene function in S. cerevisiae. This Robot Scientist will be capable of initiating >1,000 experiments, and making >200,000 observations a day. Robot Scientists provide a unique test bed for the development of methodologies for the curation and annotation of scientific experiments: because the experiments are conceived and executed automatically by computer, it is possible to completely capture and digitally curate all aspects of the scientific process. This new ability brings with it significant technical challenges. To meet these we apply an ontology driven approach to the representation of all the Robot Scientists data and metadata. RESULTS We demonstrate the utility of developing an ontology for our new Robot Scientist. This ontology is based on a general ontology of experiments. The ontology aids the curation and annotating of the experimental data and metadata, and the equipment metadata, and supports the design of database systems to hold the data and metadata. AVAILABILITY EXPO in XML and OWL formats is at: http://sourceforge.net/projects/expo/. All materials about the Robot Scientist project are available at: http://www.aber.ac.uk/compsci/Research/bio/robotsci/.
international conference on data mining | 2008
Panče Panov; Saso Dzeroski; Larisa N. Soldatova
Motivated by the need for unification of the field of data mining and the growing demand for formalized representation of outcomes of research, we address the task of constructing an ontology of data mining. The proposed ontology, named OntoDM, is based on a recent proposal of a general framework for data mining, and includes definitions of basic data mining entities, such as datatype and dataset, data mining task, data mining algorithm and components thereof (e.g., distance function), etc. It also allows for the definition of more complex entities, e.g., constraints in constraint-based data mining, sets of such constraints (inductive queries) and data mining scenarios (sequences of inductive queries). Unlike most existing approaches to constructing ontologies of data mining, OntoDM is a deep/heavy-weight ontology and follows best practices in ontology engineering, such as not allowing multiple inheritance of classes, using a predefined set of relations and using a top level ontology.
Automated Experimentation | 2010
Andrew Charles Sparkes; Wayne Aubrey; Emma Louise Byrne; Amanda Clare; Muhammed N Khan; Maria Liakata; Magdalena Markham; Jem J. Rowland; Larisa N. Soldatova; Kenneth Edward Whelan; Michael Young; Ross D. King
We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.
PLOS ONE | 2016
Anita Bandrowski; Ryan R. Brinkman; Mathias Brochhausen; Matthew H. Brush; Bill Bug; Marcus C. Chibucos; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran; Melissa Haendel; Yongqun He; Mervi Heiskanen; Tina Hernandez-Boussard; Mark Jensen; Yu Lin; Allyson L. Lister; Phillip Lord; James P. Malone; Elisabetta Manduchi; Monnie McGee; Norman Morrison; James A. Overton; Helen Parkinson; Bjoern Peters
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.
Metabolomics | 2007
Susanna-Assunta Sansone; Daniel Schober; Helen J. Atherton; Oliver Fiehn; Helen Jenkins; Philippe Rocca-Serra; Denis V. Rubtsov; Irena Spasic; Larisa N. Soldatova; Chris F. Taylor; Andy Tseng; Mark R. Viant
In this article we present the activities of the Ontology Working Group (OWG) under the Metabolomics Standards Initiative (MSI) umbrella. Our endeavour aims to synergise the work of several communities, where independent activities are underway to develop terminologies and databases for metabolomics investigations. We have joined forces to rise to the challenges associated with interpreting and integrating experimental process and data across disparate sources (software and databases, private and public). Our focus is to support the activities of the other MSI working groups by developing a common semantic framework to enable metabolomics-user communities to consistently annotate the experimental process and to enable meaningful exchange of datasets. Our work is accessible via a public webpage and a draft ontology has been posted under the Open Biological Ontology umbrella. At the very outset, we have agreed to minimize duplications across omics domains through extensive liaisons with other communities under the OBO Foundry. This is work in progress and we welcome new participants willing to volunteer their time and expertise to this open effort.
intelligent systems in molecular biology | 2008
Larisa N. Soldatova; Wayne Aubrey; Ross D. King; Amanda Clare
Motivation: Many published manuscripts contain experiment protocols which are poorly described or deficient in information. This means that the published results are very hard or impossible to repeat. This problem is being made worse by the increasing complexity of high-throughput/automated methods. There is therefore a growing need to represent experiment protocols in an efficient and unambiguous way. Results: We have developed the Experiment ACTions (EXACT) ontology as the basis of a method of representing biological laboratory protocols. We provide example protocols that have been formalized using EXACT, and demonstrate the advantages and opportunities created by using this formalization. We argue that the use of EXACT will result in the publication of protocols with increased clarity and usefulness to the scientific community. Availability: The ontology, examples and code can be downloaded from http://www.aber.ac.uk/compsci/Research/bio/dss/EXACT/ Contact: Larisa Soldatova [email protected]