Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry A. Gallagher is active.

Publication


Featured researches published by Larry A. Gallagher.


Journal of Bacteriology | 2002

Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa

Larry A. Gallagher; Susan L. McKnight; Marina S. Kuznetsova; Everett C. Pesci; Colin Manoil

A set of 30 mutants exhibiting reduced production of the phenazine poison pyocyanin were isolated following transposon mutagenesis of Pseudomonas aeruginosa PAO1. The mutants could be subdivided into those with defects in the primary phenazine biosynthetic pathway and those with more pleiotropic defects. The largest set of pleiotropic mutations blocked the production of the extracellular Pseudomonas quinolone signal (PQS), a molecule required for the synthesis of secondary metabolites and extracellular enzymes. Most of these pqs mutations affected genes which appear to encode PQS biosynthetic functions, although a transcriptional regulator and an apparent response effector were also represented. Two of the genes required for PQS synthesis (phnA and phnB) had previously been assumed to encode phenazine biosynthetic functions. The transcription of one of the genes required for PQS synthesis (PA2587/pqsH) was regulated by the LasI/R quorum-sensing system, thereby linking quorum sensing and PQS regulation. Others of the pleiotropic phenazine-minus mutations appear to inactivate novel components of the quorum-sensing regulatory network, including one regulator (np20) previously shown to be required for virulence in neutropenic mice.


Journal of Bacteriology | 2001

Pseudomonas aeruginosa PAO1 Kills Caenorhabditis elegans by Cyanide Poisoning

Larry A. Gallagher; Colin Manoil

In this report we describe experiments to investigate a simple virulence model in which Pseudomonas aeruginosa PAO1 rapidly paralyzes and kills the nematode Caenorhabditis elegans. Our results imply that hydrogen cyanide is the sole or primary toxic factor produced by P. aeruginosa that is responsible for killing of the nematode. Four lines of evidence support this conclusion. First, a transposon insertion mutation in a gene encoding a subunit of hydrogen cyanide synthase (hcnC) eliminated nematode killing. Second, the 17 avirulent mutants examined all exhibited reduced cyanide synthesis, and the residual production levels correlated with killing efficiency. Third, exposure to exogenous cyanide alone at levels comparable to the level produced by PAO1 killed nematodes with kinetics similar to those observed with bacteria. The killing was not enhanced if hcnC mutant bacteria were present during cyanide exposure. And fourth, a nematode mutant (egl-9) resistant to P. aeruginosa was also resistant to killing by exogenous cyanide in the absence of bacteria. A model for nematode killing based on inhibition of mitochondrial cytochrome oxidase is presented. The action of cyanide helps account for the unusually broad host range of virulence of P. aeruginosa and may contribute to the pathogenesis in opportunistic human infections due to the bacterium.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate

Larry A. Gallagher; Elizabeth Ramage; Michael A. Jacobs; Rajinder Kaul; M. Brittnacher; Colin Manoil

Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.


Journal of Bacteriology | 2001

Drosophila as a Model Host for Pseudomonas aeruginosa Infection

David A. D'Argenio; Larry A. Gallagher; Celeste A. Berg; Colin Manoil

Using the fruit fly Drosophila melanogaster as model host, we have identified mutants of the bacterium Pseudomonas aeruginosa with reduced virulence. Strikingly, all strains strongly impaired in fly killing also lacked twitching motility; most such strains had a mutation in pilGHIJKL chpABCDE, a gene cluster known to be required for twitching motility and potentially encoding a signal transduction system. The pil chp genes appear to control the expression of additional virulence factors, however, since the wild-type fly-killing phenotype of a subset of mutants isolated on the basis of their compact colony morphology indicated that twitching motility itself was not required for full virulence in the fly.


Genome Biology | 2007

Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

Laurence Rohmer; Christine Fong; Simone Abmayr; Michael Wasnick; Theodore Larson Freeman; Matthew Radey; Tina Guina; Kerstin Svensson; Hillary S. Hayden; Michael A. Jacobs; Larry A. Gallagher; Colin Manoil; Robert K. Ernst; Becky Drees; Danielle Buckley; Eric Haugen; Donald Bovee; Yang Zhou; Jean Chang; Ruth Levy; Regina Lim; Will Gillett; Don Guenthener; Allison Kang; Scott A. Shaffer; Greg Taylor; Jinzhi Chen; Byron Gallis; David A. D'Argenio; Mats Forsman

BackgroundFrancisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.ResultsComparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.ConclusionThe chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.


Mbio | 2011

Genome-Scale Identification of Resistance Functions in Pseudomonas aeruginosa Using Tn-seq

Larry A. Gallagher; Jay Shendure; Colin Manoil

ABSTRACT We describe a deep-sequencing procedure for tracking large numbers of transposon mutants of Pseudomonas aeruginosa. The procedure employs a new Tn-seq methodology based on the generation and amplification of single-strand circles carrying transposon junction sequences (the Tn-seq circle method), a method which can be used with virtually any transposon. The procedure reliably identified more than 100,000 transposon insertions in a single experiment, providing near-saturation coverage of the genome. To test the effectiveness of the procedure for mutant identification, we screened for mutations reducing intrinsic resistance to the aminoglycoside antibiotic tobramycin. Intrinsic tobramycin resistance had been previously analyzed at genome scale using mutant-by-mutant screening and thus provided a benchmark for evaluating the new method. The new Tn-seq procedure identified 117 tobramycin resistance genes, the majority of which were then verified with individual mutants. The group of genes with the strongest mutant phenotypes included nearly all (13 of 14) of those with strong mutant phenotypes identified in the previous screening, as well as a nearly equal number of new genes. The results thus show the effectiveness of the Tn-seq method in defining the genetic basis of a complex resistance trait of P. aeruginosa and indicate that it can be used to analyze a variety of growth-related processes. IMPORTANCE Research progress in microbiology is technology limited in the sense that the analytical methods available dictate how questions are experimentally addressed and, to some extent, what questions are asked. This report describes a new transposon tracking procedure for defining the genetic basis of growth-related processes in Pseudomonas aeruginosa, an important bacterial pathogen. The method employs next-generation sequencing to monitor the makeup of mutant populations (Tn-seq) and has several potential advantages over other Tn-seq methodologies. The new method was validated through the analysis of a clinically relevant antibiotic resistance trait. Research progress in microbiology is technology limited in the sense that the analytical methods available dictate how questions are experimentally addressed and, to some extent, what questions are asked. This report describes a new transposon tracking procedure for defining the genetic basis of growth-related processes in bacteria. The method employs next-generation sequencing to monitor the makeup of mutant populations (Tn-seq) and has several potential advantages over other Tn-seq methodologies. The new method was validated through the analysis of a clinically relevant antibiotic resistance trait in Pseudomonas aeruginosa, an important bacterial pathogen.


Molecular Microbiology | 2006

Type IV pili-mediated secretion modulates Francisella virulence

Anthony J. Hager; Diana L. Bolton; Mark R. Pelletier; M. Brittnacher; Larry A. Gallagher; Rajinder Kaul; Shawn J. Skerrett; Samuel I. Miller; Tina Guina

Francisella tularensis are the causative agent of the zoonotic disease, tularaemia. Among four F. tularensis subspecies, ssp. novicida (F. novicida) is pathogenic only for immunocompromised individuals, while all four subspecies are pathogenic for mice. This study utilized proteomic and bioinformatic approaches to identify seven F. novicida secreted proteins and the corresponding Type IV pilus (T4P) secretion system. The secreted proteins were predicted to encode two chitinases, a chitin binding protein, a protease (PepO), and a β‐glucosidase (BglX). The transcription of F. novicida pepO and bglX was regulated by the virulence regulator MglA. Intradermal infection of mice with F. novicida mutants defective in T4P secretion system or PepO resulted in enhanced F. novicida spread to systemic sites. Infection with F. novicida pepO mutants also resulted in increased neutrophil infiltration into the mouse airways. PepO is a zinc protease that is homologous to mammalian endothelin‐converting enzyme ECE‐1. Therefore, secretion of PepO likely results in increased production of endothelin and increased vasoconstriction at the infection site in skin that limits the F. novicida spread. Francisella human pathogenic strains contain a mutation in pepO predicted to abolish its secretion. Loss of PepO function may have contributed to evolution of highly virulent Francisellae.


Infection and Immunity | 2009

Genome-Wide Screen in Francisella novicida for Genes Required for Pulmonary and Systemic Infection in Mice

Petra S. Kraemer; Allison Mitchell; Mark R. Pelletier; Larry A. Gallagher; Mike Wasnick; Laurence Rohmer; M. Brittnacher; Colin Manoil; Shawn J. Skerett; Nina R. Salama

ABSTRACT Francisella tularensis is a gram-negative, highly infectious, aerosolizable facultative intracellular pathogen that causes the potentially life-threatening disease tularemia. To date there is no approved vaccine available, and little is known about the molecular mechanisms important for infection, survival, and dissemination at different times of infection. We report the first whole-genome screen using an inhalation mouse model to monitor infection in the lung and dissemination to the liver and spleen. We queried a comprehensive library of 2,998 sequence-defined transposon insertion mutants in Francisella novicida strain U112 using a microarray-based negative-selection screen. We were able to track the behavior of 1,029 annotated genes, equivalent to a detection rate of 75% and corresponding to ∼57% of the entire F. novicida genome. As expected, most transposon mutants retained the ability to colonize, but 125 candidate virulence genes (12%) could not be detected in at least one of the three organs. They fell into a variety of functional categories, with one-third having no annotated function and a statistically significant enrichment of genes involved in transcription. Based on the observation that behavior during complex pool infections correlated with the degree of attenuation during single-strain infection we identified nine genes expected to strongly contribute to infection. These included two genes, those for ATP synthase C (FTN_1645) and thioredoxin (FTN_1415), that when mutated allowed increased host survival and conferred protection in vaccination experiments.


PLOS Pathogens | 2008

A Francisella mutant in lipid A carbohydrate modification elicits protective immunity.

Duangjit Kanistanon; Adeline M. Hajjar; Mark R. Pelletier; Larry A. Gallagher; Thomas F. Kalhorn; Scott A. Shaffer; David R. Goodlett; Laurence Rohmer; M. Brittnacher; Shawn J. Skerrett; Robert K. Ernst

Francisella tularensis (Ft) is a highly infectious Gram-negative bacterium and the causative agent of the human disease tularemia. Ft is designated a class A select agent by the Centers for Disease Control and Prevention. Human clinical isolates of Ft produce lipid A of similar structure to Ft subspecies novicida (Fn), a pathogen of mice. We identified three enzymes required for Fn lipid A carbohydrate modifications, specifically the presence of mannose (flmF1), galactosamine (flmF2), or both carbohydrates (flmK). Mutants lacking either galactosamine (flmF2) or galactosamine/mannose (flmK) addition to their lipid A were attenuated in mice by both pulmonary and subcutaneous routes of infection. In addition, aerosolization of the mutants (flmF2 and flmK) provided protection against challenge with wild-type (WT) Fn, whereas subcutaneous administration of only the flmK mutant provided protection from challenge with WT Fn. Furthermore, infection of an alveolar macrophage cell line by the flmK mutant induced higher levels of tumor necrosis factor-α (TNF-α) and macrophage inhibitory protein-2 (MIP-2) when compared to infection with WT Fn. Bone marrow–derived macrophages (BMMø) from Toll-like receptor 4 (TLR4) and TLR2/4 knockout mice infected with the flmK mutant also produced significantly higher amounts of interleukin-6 (IL-6) and MIP-2 than BMMø infected with WT Fn. However, production of IL-6 and MIP-2 was undetectable in BMMø from MyD88−/− mice infected with either strain. MyD88−/− mice were also susceptible to flmK mutant infection. We hypothesize that the ability of the flmK mutant to activate pro-inflammatory cytokine/chemokine production and innate immune responses mediated by the MyD88 signaling pathway may be responsible for its attenuation, leading to the induction of protective immunity by this mutant.


PLOS ONE | 2013

Combining functional and structural genomics to sample the essential Burkholderia structome.

Loren Baugh; Larry A. Gallagher; Rapatbhorn Patrapuvich; Matthew C. Clifton; Anna S. Gardberg; Thomas E. Edwards; Brianna Armour; Darren W. Begley; Shellie H. Dieterich; David M. Dranow; Jan Abendroth; James W. Fairman; David Fox; Bart L. Staker; Isabelle Phan; Angela K. Gillespie; Ryan Choi; Steve Nakazawa-Hewitt; Mary Trang Nguyen; Alberto J. Napuli; Lynn K. Barrett; Garry W. Buchko; Robin Stacy; Peter J. Myler; Lance J. Stewart; Colin Manoil; Wesley C. Van Voorhis

Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.

Collaboration


Dive into the Larry A. Gallagher's collaboration.

Top Co-Authors

Avatar

Colin Manoil

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Brittnacher

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kiara G. Held

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eli Weiss

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge