Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Jacobs is active.

Publication


Featured researches published by Michael A. Jacobs.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Comprehensive transposon mutant library of Pseudomonas aeruginosa

Michael A. Jacobs; Ashley Alwood; Iyarit Thaipisuttikul; David H. Spencer; Eric Haugen; Stephen Ernst; Oliver Will; Rajinder Kaul; Christopher K. Raymond; Ruth Levy; Liu Chun-Rong; Donald Guenthner; Donald Bovee; Maynard V. Olson; Colin Manoil

We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.


Bioinformatics | 2011

PGAT: a multistrain analysis resource for microbial genomes

M. Brittnacher; Christine Fong; Hillary S. Hayden; Michael A. Jacobs; Matthew Radey; Laurence Rohmer

Motivation: The Prokaryotic-genome Analysis Tool (PGAT) is a web-based database application for comparing gene content and sequence across multiple microbial genomes facilitating the discovery of genetic differences that may explain observed phenotypes. PGAT supports database queries to identify genes that are present or absent in user-selected genomes, comparison of sequence polymorphisms in sets of orthologous genes, multigenome display of regions surrounding a query gene, comparison of the distribution of genes in metabolic pathways and manual community annotation. Availability and Implementation:The PGAT website may be accessed at http://nwrce.org/pgat. Contact: [email protected]


Journal of Virology | 2005

Dengue Virus Inhibits Alpha Interferon Signaling by Reducing STAT2 Expression

Meleri Jones; Andrew D. Davidson; Linda Hibbert; Petra Gruenwald; Joerg F. Schlaak; Simon Ball; Graham R. Foster; Michael A. Jacobs

ABSTRACT Alpha/beta interferon (IFN-α/β) is a key mediator of innate antiviral responses but has little effect on the established replication of dengue viruses, which are mosquito-borne flaviviruses of immense global health importance. Understanding how the IFN system is inhibited in dengue virus-infected cells would provide critical insights into disease pathogenesis. In a recent study analyzing the ability of individual dengue virus-encoded proteins to antagonize the IFN response, nonstructural (NS) protein 4B and possibly NS2A and NS4A were identified as candidate IFN antagonists. In monkey cells, NS4B appeared to inhibit both the IFN-α/β and IFN-γ signal transduction pathways, which are distinct but overlapping (J. L. Munoz-Jordan, G. G. Sanchez-Burgos, M. Laurent-Rolle, and A. Garcia-Sastre, Proc. Natl. Acad. Sci. USA 100:14333-14338, 2003). For this study, we examined the effects of dengue virus on the human IFN system, using cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and that expressed all of the dengue virus nonstructural proteins together. We show here that in replicon-containing cells dengue virus RNA replication and the replication of encephalomyocarditis virus, an IFN-sensitive virus, are resistant to the antiviral effects of IFN-α. The presence of dengue virus replicons reduces global IFN-α-stimulated gene expression and specifically inhibits IFN-α but not IFN-γ signal transduction. In cells containing replicons or infected with dengue virus, we found reduced levels of signal transducer and activator of transcription 2 (STAT2), which is a key component of IFN-α but not IFN-γ signaling. Collectively, these data show that dengue virus is capable of subverting the human IFN response by down-regulating STAT2 expression.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate

Larry A. Gallagher; Elizabeth Ramage; Michael A. Jacobs; Rajinder Kaul; M. Brittnacher; Colin Manoil

Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Foamy virus vector integration sites in normal human cells

Grant D. Trobridge; Daniel G. Miller; Michael A. Jacobs; James M. Allen; Hans Peter Kiem; Rajinder Kaul; David W. Russell

Foamy viruses (FVs) or spumaviruses are retroviruses that have been developed as vectors, but their integration patterns have not been described. We have performed a large-scale analysis of FV integration sites in unselected human fibroblasts (n = 1,008) and human CD34+ hematopoietic cells (n = 1,821) by using a bacterial shuttle vector and a comparable analysis of lentiviral vector integration sites in CD34+ cells (n = 1,331). FV vectors had a distinct integration profile relative to other types of retroviruses. They did not integrate preferentially within genes, despite a modest preference for integration near transcription start sites and a significant preference for CpG islands. The genomewide distribution of FV vector proviruses was nonrandom, with both clusters and gaps. Transcriptional profiling showed that gene expression had little influence on integration site selection. Our findings suggest that FV vectors may have desirable integration properties for gene therapy applications.


Genome Biology | 2007

Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

Laurence Rohmer; Christine Fong; Simone Abmayr; Michael Wasnick; Theodore Larson Freeman; Matthew Radey; Tina Guina; Kerstin Svensson; Hillary S. Hayden; Michael A. Jacobs; Larry A. Gallagher; Colin Manoil; Robert K. Ernst; Becky Drees; Danielle Buckley; Eric Haugen; Donald Bovee; Yang Zhou; Jean Chang; Ruth Levy; Regina Lim; Will Gillett; Don Guenthener; Allison Kang; Scott A. Shaffer; Greg Taylor; Jinzhi Chen; Byron Gallis; David A. D'Argenio; Mats Forsman

BackgroundFrancisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.ResultsComparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.ConclusionThe chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.


Journal of Virology | 2005

Large-Scale Analysis of Adeno-Associated Virus Vector Integration Sites in Normal Human Cells

Daniel G. Miller; Grant D. Trobridge; Lisa M. Petek; Michael A. Jacobs; Rajinder Kaul; David W. Russell

ABSTRACT The integration sites of viral vectors used in human gene therapy can have important consequences for safety and efficacy. However, an extensive evaluation of adeno-associated virus (AAV) vector integration sites has not been completed, despite the ongoing use of AAV vectors in clinical trials. Here we have used a shuttle vector system to isolate and analyze 977 unique AAV vector-chromosome integration junctions from normal human fibroblasts and describe their genomic distribution. We found a significant preference for integrating within CpG islands and the first 1 kb of genes, but only a slight overall preference for transcribed sequences. Integration sites were clustered throughout the genome, including a major preference for integration in ribosomal DNA repeats, and 13 other hotspots that contained three or more proviruses within a 500-kb window. Both junctions were localized from 323 proviruses, allowing us to characterize the chromosomal deletions, insertions, and translocations associated with vector integration. These studies establish a profile of insertional mutagenesis for AAV vectors and provide unique insight into the chromosomal distribution of DNA strand breaks that may facilitate integration.


PLOS ONE | 2013

Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

Stephen J. Salipante; Dhruba J. Sengupta; Christopher Rosenthal; Gina Costa; Jessica Spangler; Elizabeth H. Sims; Michael A. Jacobs; Samuel I. Miller; Daniel R. Hoogestraat; Brad T. Cookson; Connor O. McCoy; Frederick A. Matsen; Jay Shendure; Clarence Lee; Timothy T. Harkins; Noah G. Hoffman

Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.


PLOS ONE | 2012

Evolution of Burkholderia pseudomallei in Recurrent Melioidosis

Hillary S. Hayden; Regina Lim; M. Brittnacher; Elizabeth H. Sims; Elizabeth Ramage; Christine Fong; Zaining Wu; Eva M Crist; Jean Chang; Yang Zhou; Matthew Radey; Laurence Rohmer; Eric Haugen; Will Gillett; Vanaporn Wuthiekanun; Sharon J. Peacock; Rajinder Kaul; Samuel I. Miller; Colin Manoil; Michael A. Jacobs

Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis.


Journal of Virology | 2004

Tetracycline-Inducible Packaging Cell Line for Production of Flavivirus Replicon Particles

Tracey J. Harvey; Wen Jun Liu; Xiang Ju Wang; Richard Linedale; Michael A. Jacobs; Andrew D. Davidson; Thuy Le; Itaru Anraku; Andreas Suhrbier; Pei Yong Shi; Alexander A. Khromykh

ABSTRACT We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 × 109 VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8+-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 × 107 VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 106 splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.

Collaboration


Dive into the Michael A. Jacobs's collaboration.

Top Co-Authors

Avatar

Rajinder Kaul

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Radey

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Brittnacher

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Colin Manoil

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge