Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry Mahrt is active.

Publication


Featured researches published by Larry Mahrt.


Boundary-Layer Meteorology | 1986

A simple model of the atmospheric boundary layer; sensitivity to surface evaporation

I B Troen; Larry Mahrt

A simple formulation of the boundary layer is developed for use in large-scale models and other situations where simplicity is required. The formulation is suited for use in models where some resolution is possible within the boundary layer, but where the resolution is insufficient for resolving the detailed boundary-layer structure and overlying capping inversion. Surface fluxes are represented in terms of similarity theory while turbulent diffusivities above the surface layer are formulated in terms of bulk similarity considerations and matching conditions at the top of the surface layer. The boundary-layer depth is expressed in terms of a bulk Richardson number which is modified to include the influence of thermals. Attention is devoted to the interrelationship between predicted boundary-layer growth, the turbulent diffusivity profile, ‘countergradient’ heat flux and truncation errors.The model predicts growth of the convectively mixed layer reasonably well and is well-behaved in cases of weak surface heat flux and transitions between stable and unstable cases. The evolution of the modelled boundary layer is studied for different ratios of surface evaporation to potential evaporation. Typical variations of surface evaporation result in a much greater variation in boundary-layer depth than that caused by the choice of the boundary-layer depth formulation.


Journal of Atmospheric and Oceanic Technology | 1997

Quality Control and Flux Sampling Problems for Tower and Aircraft Data

Dean Vickers; Larry Mahrt

Abstract A series of automated tests is developed for tower and aircraft time series to identify instrumentation problems, flux sampling problems, and physically plausible but unusual situations. The automated procedures serve as a safety net for quality controlling data. A number of special flags are developed representing a variety of potential problems such as inconsistencies between different tower levels and the flux error due to fluctuations of aircraft height. The tests are implemented by specifying critical values for parameters representing each specific error. The critical values are developed empirically from experience of applying the tests to real turbulent time series. When these values are exceeded, the record is flagged for further inspection and comparison with the rest of the concurrent data. The inspection step is necessary to either verify an instrumentation problem or identify physically plausible behavior. The set of tests is applied to tower data from the Riso Air Sea Experiment and...


Boundary-Layer Meteorology | 1987

Interaction between soil hydrology and boundary-layer development

H.-L. Pan; Larry Mahrt

A two-layer model of soil hydrology and thermodynamics is combined with a one-dimensional model of the planetary boundary layer to study various interactions between evolution of the boundary layer and soil moisture transport. Boundary-layer moistening through surface evaporation reduces the potential and actual surface evaporation as well as the boundary-layer growth. With more advanced stages of soil drying, the restricted surface evaporation allows greater sensible heat flux which enhances boundary-layer growth and entrainment drying.Special individual cases are studied where the wind speed is strong, solar radiation is reduced, transpiration is important, the soil is thin, or the soil is covered with organic debris.


Boundary-Layer Meteorology | 1999

Stratified Atmospheric Boundary Layers

Larry Mahrt

Various features of different stability regimes of the stable boundary layer are discussed. Traditional layering is examined in terms of the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top. In the very stable case, the strongest turbulence may be detached from the surface and generated by shear associated with a low level jet, gravity waves or meandering motions. In this case, similarity theory and the traditional concept of a boundary-layer break down. The elevated turbulence may intermittently recouple to the surface. Inability to adequately measure turbulent fluxes in very stable conditions limits our knowledge of this regime.


Journal of Atmospheric and Oceanic Technology | 1998

Flux Sampling Errors for Aircraft and Towers

Larry Mahrt

Abstract Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling errors are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns ...


Journal of Applied Meteorology | 1984

The Influence of Atmospheric Stability on Potential Evaporation

Larry Mahrt; Michael B. Ek

Abstract The Penman relationship for potential evaporation is modified to simply include the influence of atmospheric stability on turbulent transport of water vapor. Explicit expressions for the stability-dependent, surface exchange coefficient developed by Louis are used. The diurnal variation of potential evaporation is computed for the stability-dependent and original Penman relationships using Wangara data. The influence of afternoon instability increases the aerodynamic term of the modified Penman relationship by 50% or more on days with moderate instability. However, the unmodified Penman relationship predicts values of daily potential evaporation close to that of the stability-dependent relationship. This agreement is partly due to compensating overestimation during nighttime hours. Errors due to use of daily-averaged variables are examined in detail by evaluating the nonlinear interactions between the diurnal variation of the variables in the Penman relationship. A simpler method for estimating t...


Boundary-Layer Meteorology | 2002

Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99

Robert M. Banta; Rob K. Newsom; Julie K. Lundquist; Y. L. Pichugina; Richard L. Coulter; Larry Mahrt

Characteristics and evolution of the low-level jet (LLJ)over southeastern Kansas were investigated during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES–99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of Dopplermini-sodar/profiler combinations. Using this collection of instrumentation we determined thespeed UX, height ZX and direction DX of the LLJ. We investigate here the frequencyof occurrence, the spatial distribution, and the evolution through the night, of these LLJcharacteristics. The jet of interest in this study was that which generates the shear and turbulencebelow the jet and near the surface. This was represented by the lowest wind maximum.We found that this wind maximum, which was most often between 7 and 10 m s‐1,was often at or just below 100 m above ground level as measured by HRDL at the CASEScentral site. Over the 60 km profiler–sodararray, the topography varied by ∼100 m. The wind speed anddirection were relatively constant over this distance (with some tendency for strongerwinds at the highest site), but ZX was more variable. ZX was occasionally about equal at allthree sites, indicating that the jet was following the terrain, but more often it seemed to berelatively level, i.e., at about the same height above sea level. ZX was also more variable thanUX in the behaviour of the LLJ with time through the night, and on some nights


Boundary-Layer Meteorology | 1998

Nocturnal boundary-layer regimes

Larry Mahrt

UX wasremarkably steady. Examples of two nights with strong turbulence below jet level were furtherinvestigated using the 60 m tower at the main CASES–99 site. Evidence of TKE increasing withheight and downward turbulent transport of TKE indicates that turbulence was primarilygenerated aloft and mixed downward, supporting the upside–down boundary layer notion in thestable boundary layer.


Journal of Atmospheric and Oceanic Technology | 2003

The Cospectral Gap and Turbulent Flux Calculations

Dean Vickers; Larry Mahrt

This study analyzes turbulence data collected over a grassland site in the nocturnal boundary layer. Examination of the dependence of the nocturnal boundary layer on stability suggests three regimes: a) the weakly stable case, b) a transition stability regime where many of the variables change rapidly with increasing stability and c) the very stable case. The value of z/L where the downward heat flux is a maximum defines the stability boundary between the weakly stable and transition regimes, where L is the Obukhov length. In the present analysis, the downward heat flux reaches a maximum at z/L approximately equal to 0.05 for 10 m, although comparison with other data indicates that this is not a universal value. For weaker stability, the heat flux decreases with decreasing z/L due to weaker temperature fluctuations. In the transition stability regime, the heat flux decreases rapidly with increasing stability due to restriction of vertical velocity fluctuations by the increasing stratification.For weakly stable conditions, the variances scale according to Monin-Obukhov similarity theory. For very stable conditions, the variances are contaminated by non-turbulent horizontal motions and do not follow the scaling laws. An alternative length scale based on variances is developed which explains more of the variance of the transfer coefficients compared to the Obukhov length.


Journal of Physical Oceanography | 2013

On the Exchange of Momentum over the Open Ocean

James B. Edson; Venkata Jampana; Robert A. Weller; Sebastien P. Bigorre; Albert J. Plueddemann; Christopher W. Fairall; Scott D. Miller; Larry Mahrt; Dean Vickers; Hans Hersbach

Abstract An alternative method to Fourier analysis is discussed for studying the scale dependence of variances and covariances in atmospheric boundary layer time series. Unlike Fourier decomposition, the scale dependence based on multiresolution decomposition depends on the scale of the fluctuations and not the periodicity. An example calculation is presented in detail. Multiresolution decomposition is applied to tower datasets to study the cospectral gap scale, which is the timescale that separates turbulent and mesoscale fluxes of heat, moisture, and momentum between the atmosphere and the surface. It is desirable to partition the flux because turbulent fluxes are related to the local wind shear and temperature stratification through similarity theory, while mesoscale fluxes are not. Use of the gap timescale to calculate the eddy correlation flux removes contamination by mesoscale motions, and therefore improves similarity relationships compared to the usual approach of using a constant averaging timesc...

Collaboration


Dive into the Larry Mahrt's collaboration.

Top Co-Authors

Avatar

Dean Vickers

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Jielun Sun

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Kyung-Ja Ha

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Donald H. Lenschow

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

David R. Stauffer

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Timothy L. Crawford

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Edgar L. Andreas

Cold Regions Research and Engineering Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carmen J. Nappo

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott J. Richardson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge