Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry W. Daniel is active.

Publication


Featured researches published by Larry W. Daniel.


Biochemical and Biophysical Research Communications | 1988

Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols

Larry W. Daniel; George W. Small; Jeffrey Daniel Schmitt; Canio J. Marasco; Khalid S. Ishaq; Claude Piantadosi

Alkylacylglycerols are synthesized when choline-phospholipids are degraded by a phospholipase C. This class of compounds has been shown to have biological activities; however, the mechanism of action is unknown. A series of alkyl-linked diglycerides were synthesized and tested for activity in an in vitro assay for protein kinase C. When protein kinase C activity was stimulated with the synthetic diacylglyceride analog 1-oleoyl-2-acetyl-sn-glycerol, the addition of alkyl glycerides caused a concentration-dependent inhibition of protein kinase C activity. Comparison of the protein kinase C inhibition by this series of 1-O-alkyl-2-acyl analogs revealed that both saturated and unsaturated long-chain groups in position 1 were effective and that dietherglycerols with short-chain moieties in position 2 were also effective. It is concluded from these studies that the biological activity of alkyl-linked glycerides may be expressed through protein kinase C inhibition.


Journal of Immunology | 2007

The requirement of reversible cysteine sulfenic acid formation for T cell activation and function

Ryan D. Michalek; Kimberly J. Nelson; Beth C. Holbrook; John S. Yi; Daya Stridiron; Larry W. Daniel; Jacquelyn S. Fetrow; S. Bruce King; Leslie B. Poole; Jason M. Grayson

Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8+ T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8+ T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8+ and CD4+ T cells. We also found that TNF-α production by effector and memory CD8+ T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-γ. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8+ T cells are able to modulate signaling, proliferation, and function.


Methods in Enzymology | 2010

Use of Dimedone-Based Chemical Probes for Sulfenic Acid Detection: Methods to Visualize and Identify Labeled Proteins

Kimberly J. Nelson; Chananat Klomsiri; Simona G. Codreanu; Laura Soito; Daniel C. Liebler; LeAnn C. Rogers; Larry W. Daniel; Leslie B. Poole

Reversible thiol modification is a major component of the modulation of cell-signaling pathways by reactive oxygen species. Hydrogen peroxide, peroxynitrite, or lipid hydroperoxides are all able to oxidize cysteines to form cysteine sulfenic acids; this reactive intermediate can be directly reduced to thiol by cellular reductants such as thioredoxin or further participate in disulfide bond formation with glutathione or cysteine residues in the same or another protein. To identify the direct protein targets of cysteine modification and the conditions under which they are oxidized, a series of dimedone-based reagents linked to affinity or fluorescent tags have been developed that specifically alkylate and trap cysteine sulfenic acids. In this chapter, we provide detailed methods using one of our biotin-tagged reagents, DCP-Bio1, to identify and monitor proteins that are oxidized in vitro and in vivo. Using streptavidin-linked agarose beads, this biotin-linked reagent can be used to affinity capture labeled proteins. Stringent washing of the beads prior to elution minimizes the contamination of the enriched material with unlabeled proteins through coimmunoprecipitation or nonspecific binding. In particular, we suggest including DTT in one of the washes to remove proteins covalently linked to biotinylated proteins through a disulfide bond, except in cases where these linked proteins are of interest. We also provide methods for targeted approaches monitoring cysteine oxidation in individual proteins, global approaches to follow total cysteine oxidation in the cell, and guidelines for proteomic analyses to identify novel proteins with redox sensitive cysteines.


Journal of Biological Chemistry | 2001

Protein Kinases C Translocation Responses to Low Concentrations of Arachidonic Acid

Joseph T. O'Flaherty; Brad A. Chadwell; Mary W. Kearns; Susan Sergeant; Larry W. Daniel

Arachidonic acid (AA) directly activates protein kinases C (PKC) and may thereby serve as a regulatory signal during cell stimulation. The effect, however, requires a ≥20 μm concentration of the fatty acid. We find that human polymorphonuclear neutrophils (PMN) equilibrated with a ligand for the diacylglycerol receptor on PKC, [3H]phorbol dibutyrate (PDB), increased binding of [3H]PDB within 15 s of exposure to ≥10–30 nm AA. Other unsaturated fatty acids, but not a saturated fatty acid, likewise stimulated PDB binding. These responses, similar to those caused by chemotactic factors, resulted from a rise in the number of diacylglycerol receptors that were plasma membrane-associated and therefore accessible to PDB. Unlike chemotactic factors, however, AA was fully active on cells overloaded with Ca2+chelators. The major metabolites of AA made by PMN, leukotriene B4 and 5-hydroxyicosatetraenoate, did not mimic AA, and an AA antimetabolite did not block responses to AA. AA also induced PMN to translocate cytosolic PKCα, βII, and δ to membranes. This response paralleled PDB binding with respect to dose requirements, time, Ca2+-independence, resistance to an AA antimetabolite, and induction by another unsaturated fatty acid but not by a saturated fatty acid. Finally, HEK 293 cells transfected with vectors encoding PKCβI or PKCδ fused to the reporter enhanced green fluorescent protein (EGFP) were studied. AA caused EGFP-PKCβ translocation from cytosol to plasma membrane at ≥0.5 μm, and EGFP-PKCδ translocation from cytosol to nuclear and, to a lesser extent, plasma membrane at as little as 30 nm. We conclude that AA induces PKC translocations to specific membrane targets at concentrations 2–4 orders of magnitude below those activating the enzymes. These responses, at least as they occur in PMN, do not require changes in cell Ca2+ or oxygenation of the fatty acid. AA seems more suited for signaling the movement than activation of PKC.


Biochemical and Biophysical Research Communications | 1984

1-O-hexadecyl-2-acetyl-sn-glycerol stimulates differentiation of HL-60 human promyelocytic leukemia cells to macrophage-like cells

Michael J.C. McNamara; Jeffrey Daniel Schmitt; Robert L. Wykle; Larry W. Daniel

Summary The human promyelocytic leukemia cell line HL-60 can be differentiated to cells resembling either neutrophils or mononuclear phagocytes by a diverse group of stimuli. However, the underlying mechanisms remain unknown. We report that 1- O -hexadecyl-2-acetyl- sn -glycerol inhibits the growth of HL-60 cells and induces differentiation to cells resembling mononuclear phagocytes. HL-60 cultures incubated for 6 days with 1- O -hexadecyl-2-acetyl- sn -glycerol (5 μg/ml) demonstrated a ten-fold increase in nonspecific esterase activity, and produced cells with morphological features similar to those of monocytes and macrophages. Higher concentrations of 1- O -hexadecyl-2-acetyl- sn -glycerol significantly inhibited the growth of HL-60 cells and resulted in the virtual absence of cells resembling the original HL-60 line. 1- O -Oleoyl-2-acetyl- rac -glycerol added under the same conditions did not induce cell differentiation or inhibit cell growth.


Lipids | 1987

The degradation of platelet-activating factor and related lipids: Susceptibility to phospholipases C and D

Rebecca W. Wilcox; Robert L. Wykle; Jeffery D. Schmitt; Larry W. Daniel

Abstract1-O-Octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) is an ether-linked lipid that exhibits selective cytotoxicity toward several types of tumor cells and is relatively inactive toward normal cells under the same conditions of treatment. The mechanism of this selective cytotoxicity is unknown. We conducted studies to determine whether this compound is metabolized by phospholipases C and D and, if so, whether sensitive and resistant cells differ in their ability to degrade ET-18-OCH3 by these enzymes. We have examined the metabolism of the L-isomer of ET-18-OCH3, 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (L-ET-18-OCH3), by lysophospholipase D of rat liver microsomes and by a phospholipase D from the marine bacteriumVibrio damsela. The metabolism of L-ET-18-OCH3 was also examined in cell culture using Madin-Darby canine kidney cells, human promyelocytic leukemia cells and human myelocytic leukemia cells. In these studies, L-ET-18-OCH3 and related 1-O-alkyl-linked phosphocholine analogs radiolabeled with3H in the 1-O-alkyl chain were used.L-ET-18-OCH3 was not hydrolyzed by lysophospholipase D from rat liver microsomes under conditions where cleavage of 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine was observed. However, phospholipase D from the marine bacteriumV. damsela readily hydrolyzed L-ET-18-OCH3 to 1-O-[3H]octadecyl-2-O-methyl-sn-glycero-3-phosphate, demonstrating that L-ET-18-OCH3 can be degraded by a phospholipase D. Platelet-activating factor (PAF) and lyso-PAF were also substrates for the bacterial phospholipase D.When intact cells were incubated with radiolabeled L-ET-18-OCH3 a product was formed that was identified as 1-O-[3H]octadecyl-2-O-methyl-sn-glycerol. There are two mechanisms that could account for the appearance of this product. The first involves cleavage of the compound by a phospholipase C, resulting in direct release of the diglyceride. The second possible mechanism involves cleavage by a phospholipase D to form the phosphatidic acid analog with subsequent hydrolysis to the diglyceride by a phosphohydrolase. Preliminary data support the phospholipase C-type mechanism. Regardless of which mechanism operates in intact cells, the metabolic degradation of L-ET-18-OCH3 does not appear to be a significant factor in the selective cytotoxicity of this antitumor agent.


Lipids | 1987

Ether lipids inhibit the effects of phorbol diester tumor promoters

Larry W. Daniel; Lori A. Etkin; Bennett T. Morrison; Judy Parker; Susan L. Morris-Natschke; Jefferson R. Surles; Claude Plantadosi

Recent studies have shown that the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulates protein kinase C (PKC), whereas the ether-linked phospholipid 1-O-octadecyl-2-O-methyl-rac-glycerol-3-phosphocholine (ET-18-OCH3) inhibits PKC activity in vitro. Therefore, the antitumor effects of ET-18-OCH3 could be due to its inhibition of PKC activity and the effects of tumor promotion. TPA stimulates arachidonic acid release, prostaglandin synthesis, phosphatidylcholine synthesis and the degradation of phosphatidylcholine by phospholipase C in Madin Darby canine kidney (MDCK) cells. Therefore, we have determined the effects of ET-18-OCH3 on these consequences of TPA stimulation. Preliminary experiments determined that ET-18-OCH3 inhibited PKC partially purified from MDCK cells by ion-exchange chromatography on DEAE-cellulose. In addition, ET-18-OCH3, inhibited the TPA-stimulated phosphorylation of a 40,000-dalton protein in intact MDCK cells. These data indicate that ET-18-OCH3 is an effective inhibitor of PKC activity in MDCK cells. In addition, ET-18-OCH3 was found to inhibit arachidonic acid release and prostaglandin synthesis. The inhibition of prostaglandin synthesis appears to be secondary to inhibition of arachidonic acid release, since ET-18-OCH3 does not inhibit TPA-stimulated synthesis of prostaglandin H synthase or the activity of the enzyme directly (Parker, J., Daniel, L. W., and Waite, M. [1987]J. Biol. Chem. 262, 5385–5393). ET-18-OCH3 also inhibits TPA-stimulated phosphatidylcholine synthesis and phosphatidylcholine degradation by phospholipase C. These data provide evidence that the antineoplastic ether lipids inhibit the biochemical effects of the tumor promoter TPA in intact cells and indicate that this inhibition may have a role in their biological activities.


Clinical Cancer Research | 2004

Differential Effects of Delivery of Omega-3 Fatty Acids to Human Cancer Cells by Low-Density Lipoproteins versus Albumin

Iris J. Edwards; Isabelle M. Berquin; Haiguo Sun; Joseph T. O'Flaherty; Larry W. Daniel; Michael J. Thomas; Lawrence L. Rudel; Robert L. Wykle; Yong Q. Chen

Purpose: Omega-3 (n-3) fatty acids (FA) have been proposed to confer tumor-inhibitory properties. In vivo, dietary FA are delivered to tumor cells by two main routes: low-density lipoproteins (LDL) and albumin complexes. High FA concentration in LDL and up-regulation of LDL receptors in tumor cells suggest that the LDL receptor pathway may be the major route for FA delivery. We compared effects of n-3FA delivered to human cancer cells by LDL and albumin. Experimental Design: LDL was isolated from plasma of African Green monkeys fed diets enriched in fish oil (n-3 FA) or linoleic acid (n-6FA) and used to deliver FA to MCF-7 and PC3 cancer cells. Cell proliferation, apoptosis, and changes in global gene expression were monitored. Results: Both LDL and albumin were effective in delivering FA to tumor cells and modifying the composition of cell phospholipids. The molar ratio of 20:4 (n-6) to 20:5 (n-3) in phosphatidylcholine and phosphatidylethanolamine was profoundly decreased. Although cell phospholipids were similarly modified by LDL and albumin-delivered FA, effects on cell proliferation and on transcription were markedly different. LDL-delivered n-3 FA were more effective at inhibiting cell proliferation and inducing apoptosis. Expression microarray profiling showed that a significantly higher number of genes were regulated by LDL-delivered than albumin-delivered n-3 FA with little overlap between the two sets of genes. Conclusions: These results show the importance of the LDL receptor pathway in activating molecular mechanisms responsible for the tumor inhibitory properties of n-3FA.


Free Radical Biology and Medicine | 2010

Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells.

Jerry A. Saunders; LeAnn C. Rogers; Chananat Klomsiri; Leslie B. Poole; Larry W. Daniel

Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-κB activity. To determine if reactive oxygen species (ROS), which have been implicated as second messengers in cell signaling, were also involved in LPA signaling, we treated cells with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), and antioxidants N-acetyl cysteine, EUK-134 and curcumin, and showed that all blocked LPA-dependent NF-κB activity and cell proliferation. DPI and EUK-134 also inhibited Akt and ERK phosphorylation. LPA was shown to stimulate dichlorofluorescein fluorescence, though not in the presence of DPI, apocynin (an inhibitor of NADPH oxidase), VPC32183, or PEG-catalase. Akt phosphorylation was also inhibited by PEG-catalase and apocynin. These data indicate that NADPH oxidase is a major source of ROS and H(2)O(2) is critical for LPA-mediated signaling. Thus, LPA acts as a growth factor and prevents apoptosis in SKOV3 cells by signaling through redox-dependent activation of ERK, Akt, and NF-κB-dependent signaling pathways.


Biochimica et Biophysica Acta | 1999

Phospholipase D, tumor promoters, proliferation and prostaglandins.

Larry W. Daniel; Vicki A. Sciorra; Sujoy Ghosh

Phosphatidylcholine hydrolysis by phospholipase D is a widespread response to cellular stimulation. However, the downstream signaling events subsequent to phosphatidylcholine hydrolysis are just beginning to be determined. Initially it was proposed that diglyceride formation by phospholipase D and phosphatidate phosphohydrolase resulted in long-term stimulation of protein kinase C. However, recent studies indicate that phosphatidic acid is the relevant signaling molecule in some signaling pathways. The present review will summarize studies of phospholipase D in the response of cells to the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, which causes cells to mimic the phenotype of oncogenic transformation. The role of phospholipase D in stimulation of Raf-1 and prostaglandin H synthase type-2 is emphasized.

Collaboration


Dive into the Larry W. Daniel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynn King

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar

Claude Piantadosi

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge