Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars-Åke Näslund is active.

Publication


Featured researches published by Lars-Åke Näslund.


Chemistry of Materials | 2014

Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films

Joseph Halim; Maria R. Lukatskaya; Kevin M. Cook; Jun Lu; Cole R. Smith; Lars-Åke Näslund; Steven J. May; Lars Hultman; Yury Gogotsi; Per Eklund; Michel W. Barsoum

Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films’ resistivity increases with decreasing temperature and they exhibit negative magnetoresistance—both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.


Journal of Chemical Physics | 2010

Low O2 dissociation barrier on Pt(111) due to adsorbate-adsorbate interactions

Daniel Miller; Henrik Öberg; Lars-Åke Näslund; Toyli Anniyev; Hirohito Ogasawara; Lars Pettersson; Anders Nilsson

O(2) dissociation on Pt(111) has been followed at low and saturation coverage using temperature-programmed x-ray photoelectron spectroscopy and simulated with mean-field kinetic modeling, yielding dissociation (E(a)) and desorption (E(d)) barriers of 0.32 and 0.36 eV, respectively. Density functional theory calculations show that E(a) is strongly influenced by the O-O interatomic potential in the atomic final state: of the supercells considered, that which maximizes attractive third-nearest-neighbor interactions in the atomic final state yields both the lowest computed dissociation barrier (0.24 eV) and the best agreement with experiment. It is proposed that the effect of adsorbate-adsorbate interactions must be considered when modeling catalytic processes involving dissociative steps.


Journal of Chemical Physics | 2006

The local structure of protonated water from X-ray absorption and Density Functional Theory

Matteo Cavalleri; Lars-Åke Näslund; David C. Edwards; Philippe Wernet; Hirohito Ogasawara; Satish C. B. Myneni; Lars Ojamäe; Michael Odelius; Anders Nilsson; Lars Pettersson

We present a combined x-ray absorption spectroscopy/computational study of water in hydrochloric acid (HCl) solutions of varying concentration to address the structure and bonding of excess protons and their effect on the hydrogen bonding network in liquid water. Intensity variations and energy shifts indicate changes in the hydrogen bonding structure in water as well as the local structure of the protonated complex as a function of the concentration of protons. In particular, in highly acidic solutions we find a dominance of the Eigen form, H(3)O(+), while the proton is less localized to a specific water under less acidic conditions.


Journal of Applied Physics | 2014

Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

Mark D. Tucker; Zsolt Czigány; Esteban Broitman; Lars-Åke Näslund; Lars Hultman; Johanna Rosén

Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.


Physical Chemistry Chemical Physics | 2010

Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts

Toyli Anniyev; Hirohito Ogasawara; Mathias P. Ljungberg; Kjartan Thor Wikfeldt; Janay B. MacNaughton; Lars-Åke Näslund; Uwe Bergmann; Shirlaine Koh; Peter Strasser; Lars G. M. Pettersson; Anders Nilsson

We demonstrate the successful use of hard X-ray photoelectron spectroscopy (HAXPES) for selectively probing the platinum partial d-density of states (DOS) in a Pt-Cu nanoparticle catalyst which shows activity superior to pure Pt towards the oxygen-reduction reaction (ORR). The information about occupied Pt d-band states was complemented by Pt L(2)-edge X-ray absorption near-edge spectroscopy (XANES), which probes unoccupied valence states. We found a significant electronic perturbation of the Pt projected d-DOS which was narrowed and shifted to higher binding energy compared to pure platinum. The effect of this electronic structure perturbation on the chemical properties of the nanoparticle surface is discussed in terms of the d-band model. We have thereby demonstrated that the combination of L-edge spectroscopy and HAXPES allows for an experimental derivation of the valence electronic structure in an element-specific way for 5d metal catalysts.


Physical Chemistry Chemical Physics | 2010

Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen

Janay B. MacNaughton; Lars-Åke Näslund; Toyli Anniyev; Hirohito Ogasawara; Anders Nilsson

Hydrogen peroxide has been found to form as a byproduct during fuel cell operation, which is linked to the degradation of the ion exchange membrane resulting in a shorter lifetime of the fuel cell. Using O 1s X-ray photoelectron spectroscopy and X-ray absorption spectroscopy we investigated the molecular oxygen adsorption on hydrogenated Pt(111) and found that adsorbed hydrogen promotes the formation of a hydrogen peroxide-like intermediate. Polarization dependent X-ray absorption spectroscopy reveals that the O-O molecular axis is close to parallel and the OH group is perpendicular to the surface.


Review of Scientific Instruments | 2015

Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation

Jeremy L. Schroeder; W. Thomson; B. Howard; Norbert Schell; Lars-Åke Näslund; M.P. Johansson-Jõesaar; Naureen Ghafoor; Magnus Odén; E. Nothnagel; A. Shepard; J. Greer; Jens Birch

We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.


Journal of Chemical Physics | 2014

Hydrogenation of O and OH on Pt(111): A comparison between the reaction rates of the first and the second hydrogen addition steps

Lars-Åke Näslund

The formation of water through hydrogenation of oxygen on platinum occurs at a surprisingly low reaction rate. The reaction rate limited process for this catalytic reaction is, however, yet to be settled. In the present work, the reaction rates of the first and the second hydrogen addition steps are compared when hydrogen is obtained through intense synchrotron radiation that induces proton production in a water overlayer on top of the adsorbed oxygen species. A substantial amount of the produced hydrogen diffuses to the platinum surface and promotes water formation at the two starting conditions O/Pt(111) and (H2O+OH)/Pt(111). The comparison shows no significant difference in the reaction rate between the first and the second hydrogen addition steps, which indicates that the rate determining process of the water formation from oxygen on Pt(111) is neither the first nor the second H addition step or, alternatively, that both H addition steps exert rate control.


Applied Physics Letters | 2015

Vacuum arc plasma generation and thin film deposition from a TiB2 cathode

Igor Zhirkov; Andrejs Petruhins; Lars-Åke Näslund; Szilard Kolozsvari; Peter Polcik; Johanna Rosén

We have studied the utilization of TiB2 cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of ...


Journal of Physics: Condensed Matter | 2017

Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

Chung-Chuan Lai; Cecilia Goyenola; Esteban Broitman; Lars-Åke Näslund; Hans Högberg; Lars Hultman; Gueorgui Kostov Gueorguiev; Johanna Rosén

A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ([Formula: see text]). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased [Formula: see text] leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

Collaboration


Dive into the Lars-Åke Näslund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirohito Ogasawara

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jun Lu

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge