Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Christian B. Rønn is active.

Publication


Featured researches published by Lars Christian B. Rønn.


International Journal of Developmental Neuroscience | 2000

The neural cell adhesion molecule in synaptic plasticity and ageing.

Lars Christian B. Rønn; Vladimir Berezin; Elisabeth Bock

By mediating cell adhesion and signal transduction, the neural cell adhesion molecule (NCAM) regulates neurite outgrowth, fasciculation and target recognition in the developing nervous system. In addition, a number of studies suggest an important role for the NCAM in regeneration and learning in the adult nervous system. NCAM‐deficient mice are impaired in spatial learning. Moreover, by interfering with normal NCAM function by intracranial injections of NCAM‐antibodies, long‐term potentiation (LTP) in rat hippocampal slices and learning in rats and chicks have been inhibited. In the vertebrate nervous system, NCAM is the dominant carrier of polysialic acid (PSA), an unusual carbohydrate consisting of long homopolymers of sialic acid. The PSA–NCAM expression decreases markedly during development. However, an upregulation of polysialic acid (PSA) in restricted brain areas including the hippocampus has been observed following learning. Moreover, enzymatic removal of PSA results in impaired LTP and learning. In muscle, the PSA–NCAM expression is upregulated following denervation. This response is weakened in aging rats. The expression of NCAM and PSA have been shown to be regulated by neuronal activity suggesting that the NCAM may promote structural remodelling in an activity dependent manner associated with learning and regeneration.


Journal of Neuroscience Methods | 2000

A simple procedure for quantification of neurite outgrowth based on stereological principles

Lars Christian B. Rønn; Igor Ralets; Barbara P Hartz; Morten Bech; Anton Berezin; Vladimir Berezin; Arne Møller; Elisabeth Bock

The molecular mechanisms controlling formation and remodelling of neuronal extensions are of considerable interest for the understanding of neuronal development and plasticity. Determination of neurite outgrowth in cell culture is a widely used approach to investigate these phenomena. This is generally done by a time consuming tracing of individual neurites and their branches. We have used stereological principles to determine the length of neurites. The total neuritic length per cell was estimated by counting the number of intersections between neurites and test lines of an unbiased counting frame superimposed on images of cell cultures obtained by conventional computer-assisted microscopy. The absolute length, L, of neurites per cell was subsequently estimated from the number of neurite intersections, I, per cell by means of the equation L=(pid/2)I describing the relationship between the number of neurite intersections and the vertical distance, d, between the test lines used. When measuring neurite outgrowth from PC12 cells and primary hippocampal neurons, data obtained by counting neuritic intersections correlated statistically significantly with data obtained using a conventional tracing technique. However, information was acquired more efficiently using the stereological approach. Thus, using the described set-up, the stereological procedure was approximately five times less time consuming than the conventional method based on neurite tracing. The study shows that stereological estimation of neuritic length provides a precise and efficient method for the study of neurite outgrowth in cultures of primary neurons and cell lines.


Brain Research | 2006

Does neuroglobin protect neurons from ischemic insult? A quantitative investigation of neuroglobin expression following transient MCAo in spontaneously hypertensive rats.

Christian Ansgar Hundahl; Jesper Kelsen; Katrine Kjær; Lars Christian B. Rønn; Roy E. Weber; Eva Geuens; Anders Hay-Schmidt; Jens R. Nyengaard

Neuroglobin (NGB) is a recently characterized heme globin expressed primarily in retinal nerve cells and at very low levels in endocrine-active regions of vertebrate brains. When artificially over-expressed, NGB reduces the infarct size observed after transient Middle Cerebral Artery occlusion (tMCAo) in rats. This study addresses the post-ischemic NGB expression in vivo. Ten Spontaneously Hypertensive Rats (SHRs) were randomized to tMCAo (n = 6) or sham (n = 4), and euthanized 24 h later. NGB mRNA expression was determined by means of quantitative Reverse Transcription Polymerase Reaction (qRT-PCR). Thirteen animals subjected to either 90 min tMCAo (n = 7) or sham (n = 6) surgery, were euthanized 1 week after surgery. Post-ischemic expression of NGB and the neuronal marker NeuN was studied using free-floating immunohistochemistry. Design-based stereological quantification of NGB- and NeuN-positive cells in the striatum was performed using the optical fractionator. Significantly less NGB mRNA was expressed in the ischemic hemispheres of tMCAo animals after 24 h (P < or = 0.002). At the protein level, we found a significantly lower number of NGB- and NeuN-positive striatal neurons in tMCAo rats (P < or = 0.004). NGB expression was mainly confined to the hypothalamus and amygdala. Less than one out of every two thousand neurons expressed NGB in the striatum. In the ischemic territory we did not observe selective sparing of NGB expressing neurons. No significant change in the NGB/NeuN ratio was observed. Our data indicate that endogenous expressed NGB does not provide protection against ischemic injury induced by tMCAo in SHRs.


Journal of Pharmacology and Experimental Therapeutics | 2006

The KCNQ Channel Opener Retigabine Inhibits the Activity of Mesencephalic Dopaminergic Systems of the Rat

Henrik H. Hansen; Christina Ebbesen; Claus Mathiesen; Pia Weikop; Lars Christian B. Rønn; Olivier Waroux; Jacqueline Scuvée-Moreau; Vincent Seutin; Jens D. Mikkelsen

Homo- and heteromeric complexes of KCNQ channel subunits are the molecular correlate of the M-current, a neuron-specific voltage-dependent K+ current with a well established role in control of neural excitability. We investigated the effect of KCNQ channel modulators on the activity of dopaminergic neurons in vitro and in vivo in the rat ventral mesencephalon. The firing of dopaminergic neurons recorded in mesencephalic slices was robustly inhibited in a concentration-dependent manner by the KCNQ channel opener N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester (retigabine). The effect of retigabine persisted in the presence of tetrodotoxin and simultaneous blockade of GABAA receptors, small-conductance calcium-activated K+ (SK) channels, and hyperpolarization-activated (Ih) channels, and it was potently reversed by the KCNQ channel blocker 4-pyridinylmethyl-9(10H)-anthracenone (XE991), indicating a direct effect on KCNQ channels. Likewise, in vivo single unit recordings from dopaminergic neurons revealed a prominent reduction in spike activity after systemic administration of retigabine. Furthermore, retigabine inhibited dopamine synthesis and c-Fos expression in the striatum under basal conditions. Retigabine completely blocked the excitatory effect of dopamine D2 autoreceptor antagonists. Again, the in vitro and in vivo effects of retigabine were completely reversed by preadministration of XE991. Dual immunocytochemistry revealed that KCNQ4 is the major KCNQ channel subunit expressed in all dopaminergic neurons in the mesolimbic and nigrostriatal pathways. Collectively, these observations indicate that retigabine negatively modulates dopaminergic neurotransmission, likely originating from stimulation of mesencephalic KCNQ4 channels.


Journal of Neurochemistry | 2002

Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

Lars Christian B. Rønn; Patrick Doherty; Arne Holm; Vladimir Berezin; Elisabeth Bock

The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM‐NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons from wild‐type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant‐negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant‐negative form of the mouse FGFR1, induction of neurites by the C3 peptide was abrogated. These findings suggest that the neuritogenic effect of the C3 peptide requires the presence of functional FGFRs and support the hypothesis that FGFRs are essential in cell adhesion molecule‐stimulated neurite outgrowth. The C3 peptide appears to stimulate neurite outgrowth by specifically activating an NCAM‐FGFR‐dependent signaling cascade and may therefore be of considerable interest as a tool for the determination of NCAM‐dependent neurite outgrowth as well as a potential drug capable of promoting outgrowth and regeneration of NCAM‐responsive axons.


Epilepsy Research | 2007

Effect of novel AMPA antagonist, NS1209, on status epilepticus An experimental study in rat

Asla Pitkänen; Claus Mathiesen; Lars Christian B. Rønn; Arne Møller; Jari Nissinen

The current first line treatment of status epilepticus (SE) is based on the use of compounds that enhance GABAergic transmission or block sodium channels. These treatments discontinue SE in only two-thirds of patients, and therefore new therapeutic approaches are needed. We investigated whether a novel water-soluble AMPA antagonist, NS1209, discontinues SE in adult rats. SE was induced by electrical stimulation of the amygdala or subcutaneous administration of kainic acid. Animals were monitored continuously with video-electroencephalography during SE and drug treatment. We found that NS1209 could be safely administered to rats undergoing electrically induced SE at doses up to 50mg/kg followed by intravenous infusion of 5mg/kg for up to 24h. NS1209 administered as a bolus dose of 10-50mg/kg (i.p. or i.v.) followed by infusion of 4 or 5mg/kg h (i.v.) for 2-24h effectively discontinued electrically induced SE in all animals within 30-60 min, and there was no recurrence of SE after a 24-h infusion. Kainate-induced SE was similarly blocked by 10 or 30 mg/kg NS1209 (i.v.). To compare the efficacy and neuroprotective effects of NS1209 with those of diazepam (DZP), one group of rats received DZP (20mg/kg, i.p. and another dose of 10 mg/kg 6h later). By using the administration protocols described, the anticonvulsant effect of NS1209 was faster and more complete than that of DZP. NS1209 treatment (20 mg/kg bolus followed by 5mg/kg h infusion for 24 h) was neuroprotective against SE-induced hippocampal neurodegeneration, but to a lesser extent than DZP. These findings suggest that AMPA receptor blockade by NS1209 provides a novel and mechanistically complimentary addition to the armamentarium of drugs used to treat SE in humans.


Brain Research | 2005

Regulation of activity-regulated cytoskeleton protein (Arc) mRNA after acute and chronic electroconvulsive stimulation in the rat.

Marianne Halberg Larsen; Mikkel Vestergaard Olesen; David P. D. Woldbye; Anders Hay-Schmidt; Henrik H. Hansen; Lars Christian B. Rønn; Jens D. Mikkelsen

The temporal profile of Arc gene expression after acute and chronic electroconvulsive stimulations (ECS) was studied using semi-quantitative in situ hybridisation in the rat cortex. A single ECS strongly and temporarily increased Arc mRNA levels in dentate granular cells with maximal induction seen up to 4 h after the stimulus, but returned to baseline at 24 h. A single ECS also increased expression of Arc mRNA in the CA1 and the parietal cortex, but the expression peaked within 1 h and returned to baseline levels within 2 h. Repeated or chronic ECS is a model of electroconvulsive therapy and it would be predicted that gene products involved in antidepressant effects accumulate after repeated ECS. However, repeated ECS reduced Arc gene expression in the CA1 24 h after the last stimulus. These results indicate that Arc is an immediate early gene product regulated by an acute excitatory stimulus, but not accumulated by long term repetitive ECS and therefore not a molecular biomarker for antidepressant properties. More likely, Arc is likely a molecular link to the decline in memory consolidation seen in depressive patients subjected to electroconvulsive therapy.


Brain Research | 2012

Positive allosteric modulation of α4β2 nAChR agonist induced behaviour

F. Rode; G. Munro; D. Holst; E.Ø. Nielsen; K.B. Troelsen; Daniel B. Timmermann; Lars Christian B. Rønn; Morten Grunnet

Neuronal cholinergic transmission is a prerequisite for proper CNS function. Consequently, disturbance of this system is associated with a number of pathophysiological conditions such as Parkinsons disease, Alzheimers disease, schizophrenia and ADHD. Consequently, drug discovery efforts have spurred considerable research endeavours into identifying specific compounds for this system. Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels involved in cholinergic transmission. nAChRs are homo- or heteromeric pentamers with α4β2 receptors being the most abundant heteromer. The stoichiometry of α4β2 receptors can be either (α4)(3)(β2)(2) or (α4)(2)(β2)(3) representing channels with low (LS) or high (HS) sensitivity, respectively, to endogenous ligands. In the present study we applied the partial nAChR α4β2 LS and HS agonist NS3956 and the LS selective positive allosteric modulator NS9283 to investigate the role of α4β2 in Parkinson and pain models. In 6-OHDA lesioned rats, NS3956 increased rotational behaviour when rats were co-treated with nomifensine. This effect was absent in the presence of mecamylamine. In contrast, co-treatment with NS3956 and NS9283 reduced rotational behaviour in the animals. In a rat formalin pain model NS3956 induced an analgesic response that was strongly potentiated by NS9283. Finally in vitro experiments were applied to determine dopamine release from striatal minces. NS3956 induced a concentration dependent release while NS9283 was unable to potentiate agonist induced release. Together these results emphasize involvement of α4β2 nAChR in rotational and analgesic responses and confirm striatal α4β2 receptors to be of the HS form.


Basic & Clinical Pharmacology & Toxicology | 2012

Kv7 Positive Modulators Reduce Detrusor Overactivity and Increase Bladder Capacity in Rats

Julie Svalø; Henrik H. Hansen; Lars Christian B. Rønn; Majid Sheykhzade; Gordon Munro; Frederik Rode

The effects of the Kv 7 channel modulators retigabine (opener) and XE991 (blocker) on rat bladder function were investigated ex vivo and in vivo to assess the potential of Kv 7 openers for the treatment of overactive bladder. In organ bath studies, capsaicin-stimulated rat urinary bladder rings were exposed to retigabine and XE991 and the effect on tension and amplitude was evaluated. In anaesthetized rats, retigabine (0.01-1 mg/kg, i.v.) effects on bladder function, in which overactivity was induced by continuous infusion of 0.5% acetic acid, were assessed. The effect of retigabine (10 mg/kg, p.o.) on cystometric parameters was also measured in conscious rats with capsaicin-induced irritated bladders. Localization of Kv 7 subunits within bladder tissue was analysed by RT-qPCR and western blotting. In organ bath studies, retigabine robustly reduced capsaicin-induced contractility of bladder rings and this effect was blocked by XE991 confirming the specificity of action via Kv 7 channels. In anaesthetized rats with acetic acid-irritated bladders, retigabine markedly increased bladder capacity with no concomitant reduction in blood pressure. Retigabine also reduced bladder pressure and delayed voiding in conscious rats with capsaicin-irritated bladders. Kv 7.1, Kv 7.4 and Kv 7.5 subunit mRNA transcripts were detected in rat bladder. Western blot analysis confirmed that Kv 7.4 subunit protein was expressed in rat bladder. These results suggest that retigabine and other Kv 7 channel positive modulators may have beneficial effects on bladder overactivity partly via activation of Kv 7 channels expressed in bladder tissue.


European Journal of Neuroscience | 2002

Characterization of a novel NCAM ligand with a stimulatory effect on neurite outgrowth identified by screening a combinatorial peptide library

Lars Christian B. Rønn; Marianne Olsen; Vladislav Soroka; Søren Dinesen Østergaard; Steen Dissing; Flemming M. Poulsen; Arne Holm; Vladimir Berezin; Elisabeth Bock

The neural cell adhesion molecule, NCAM, plays a key role in neural development and plasticity mediating cell adhesion and signal transduction. By screening a combinatorial library of synthetic peptides with NCAM purified from postnatal day 10 rat brains, we identified a nonapeptide, termed NCAM binding peptide 10 (NBP10) and showed by nuclear magnetic resonance analysis that it bound the NCAM IgI module of NCAM. NBP10 modulated cell aggregation as well as neurite outgrowth induced specifically by homophilic NCAM binding. Moreover, both monomeric and multimeric forms of NBP10 stimulated neurite outgrowth from primary hippocampal neurons. The neurite outgrowth response to NBP10 was inhibited by a number of compounds previously shown to inhibit neurite outgrowth induced by homophilic NCAM binding, including voltage‐dependent calcium channel antagonists, suggesting that NBP10 induced neurite outgrowth by activating a signal transduction pathway similar to that activated by NCAM itself. Moreover, an inhibitor of intracellular calcium mobilization, TMB‐8, prevented NBP10‐induced neurite outgrowth suggesting that NCAM‐dependent neurite outgrowth also requires mobilization of calcium from intracellular calcium stores in addition to calcium influx from extracellular sources. By single‐cell calcium imaging we further demonstrated that NBP10 was capable of inducing an increase in intracellular calcium in PC12E2 cells. Thus, the NBP10 peptide is a new tool for the study of molecular mechanisms underlying NCAM‐dependent signal transduction and neurite outgrowth, and could prove to be a useful modulator of regenerative processes in the peripheral and central nervous system.

Collaboration


Dive into the Lars Christian B. Rønn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Bock

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianne Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Ralets

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens D. Mikkelsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge