Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Hovgaard is active.

Publication


Featured researches published by Lars Hovgaard.


European Journal of Pharmaceutical Sciences | 2001

A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium.

Niels Hønberg Zangenberg; Anette Müllertz; Henning G. Kristensen; Lars Hovgaard

Lipolysis by pancreatic lipase was investigated with the aim to establish an in vitro lipolysis model, which can be used to investigate the dissolution of poorly soluble lipophilic drug substances at controlled hydrolysis rates. The effects of three experimental parameters -- the concentrations of bile salts and Ca(2+) and the lipase activity -- were investigated. The effect on the rate of hydrolysis of emulsified soybean oil was investigated in experiments in a pH-stat at pH 6.5 and 37 degrees C. The free fatty acids produced by the hydrolysis were titrated at pH 6.5. It was shown that all three investigated parameters influence the initial rate of hydrolysis, whereas only the lipase activity and the concentration of Ca(2+) affect the subsequent stages. It was also shown that the rate of lipolysis can be controlled by the rate of adding Ca(2+). Thus, it is possible to design an in vitro model using readily available and inexpensive materials in which the hydrolysis rate can be controlled by the continuous addition of Ca(2+).


Journal of Controlled Release | 1995

Dextran hydrogels for colon-specific drug delivery

Lars Hovgaard; Helle Brøndsted

Novel hydrogels based on dextran crosslinked with diisocyanate have been proposed for colon-specific drug delivery. The hydrogels have been characterized by equilibrium degree of swelling and mechanical strength. Degradation of the hydrogels has been studied in vitro using dextranase, in vivo in rats and in a human fermentation model. It was found that by changing the chemical composition of the hydrogels it is possible to control the equilibrium degree of swelling, mechanical strength and degradability. The dextran hydrogels were degraded in vivo in the cecum of rats but not in the stomach. Furthermore, the dextran hydrogels were degraded in a human colonic fermentation model, indicating that dextranases are indeed present in human colonic contents. Finally, release of hydrocortisone from the hydrogels was evaluated. It was found to depend on the presence of dextranases in the release medium. The results suggest that the dextran hydrogels are promising as drug carriers for colon-specific drug delivery.


European Journal of Pharmaceutical Sciences | 2001

A dynamic in vitro lipolysis model: II: Evaluation of the model

Niels Hønberg Zangenberg; Anette Müllertz; Henning G. Kristensen; Lars Hovgaard

A lipolysis model was characterised and evaluated by investigating the composition of the aqueous phase and the concentration of probucol and danazol in the aqueous phase. Effects of bile salt levels at 5, 10, 20, and 30 mM were investigated. Samples were taken at 0%, 50%, 75% and 95% hydrolysis of the triglycerides, and the aqueous phases were isolated by ultra-centrifugation, whereby the concentrations of bile salts, fatty acids, mono-, di-, triglycerides, and drug substances were measured. At high Ca(2+)-concentrations, bile salts were believed to precipitate with Ca(2+). The concentration of lipolytic products (fatty acids + monoglycerides) was dependent on the bile salt concentration. The ratio between lipolytic product and bile salts was 1.55+/-0.09 (S.D.). This ratio is equivalent to mixed bile salt micelles and vesicles in equilibrium. The aqueous solubility of probucol and danazol was increased in the presence of bile salts. The concentration of danazol in the aqueous phase was dependent on the solubilisation capacity of the aqueous phase. In the case of probucol, the concentration in the aqueous phase was dependent on the partition of probucol between the aqueous phase and the remaining triglyceride phase. This difference between danazol and probucol was attributed to the effect of different lipophilicity.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose

Mengmeng Niu; Yi Lu; Lars Hovgaard; Peipei Guan; Yanan Tan; Ruyue Lian; Jianping Qi; Wei Wu

Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.


Pharmaceutical Research | 2002

Targeting Vaccines to Dendritic Cells

Camilla Foged; Anne Sundblad; Lars Hovgaard

Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.


Pharmaceutical Research | 1995

Drug Delivery Studies in Caco-2 Monolayers. IV. Absorption Enhancer Effects of Cyclodextrins

Lars Hovgaard; Helle Brøndsted

AbstractPurpose. The purpose of the present study was to use the human colorectal carcinoma cell line, Caco-2, as a human intestinal epithelial model for studying the effects of cyclodextrins as absorption enhancers. Methods. Cyclodextrins of varying sizes and physico-chemical characters were investigated. The effects of the cyclodextrins were evaluated by means of staining of the cytoplasma and determination of the mitochondrial dehydrogenase activity as well as by transport enhancement of the macromolecular pore marker polyethylene glycol 4000 (PEG-4000) across the Caco-2 monolayers. Results. The transport enhancing properties of the cyclodextrins were found to follow the lipophilicity of the core in their cyclic structure. Dimethyl-β-cyclodextrin was the most powerful in all aspects and caused an increase in the permeability of the cytoplasma membrane in a concentration dependent manner. It was possible to increase the overall transport of PEG-4000 10-fold by the use of dimethyl-β-cyclodextrin in low concentrations where the toxic effects on the monolayers were insignificant. It was further observed that the basolateral membrane was significantly more sensitive to cyclodextrins than the apical membrane. Conclusions. Since dimethyl-β-cyclodextrin was able to produce an absorption enhancing effect on PEG-4000 in concentrations where the toxic effects on Caco-2 monolayers were low it is worth to pursue the compound as an absorption enhancer.


International Journal of Nanomedicine | 2011

Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation

Mengmeng Niu; Yi Lu; Lars Hovgaard; Wei Wu

Background: Oral delivery of insulin is challenging and must overcome the barriers of gastric and enzymatic degradation as well as low permeation across the intestinal epithelium. The present study aimed to develop a liposomal delivery system containing glycocholate as an enzyme inhibitor and permeation enhancer for oral insulin delivery. Methods: Liposomes containing sodium glycocholate were prepared by a reversed-phase evaporation method followed by homogenization. The particle size and entrapment efficiency of recombinant human insulin (rhINS)-loaded sodium glycocholate liposomes can be easily adjusted by tuning the homogenization parameters, phospholipid:sodium glycocholate ratio, insulin:phospholipid ratio, water:ether volume ratio, interior water phase pH, and the hydration buffer pH. Results: The optimal formulation showed an insulin entrapment efficiency of 30% ± 2% and a particle size of 154 ± 18 nm. A conformational study by circular dichroism spectroscopy and a bioactivity study confirmed the preserved integrity of rhINS against preparative stress. Transmission electron micrographs revealed a nearly spherical and deformed structure with discernable lamella for sodium glycocholate liposomes. Sodium glycocholate liposomes showed better protection of insulin against enzymatic degradation by pepsin, trypsin, and α-chymotrypsin than liposomes containing the bile salt counterparts of sodium taurocholate and sodium deoxycholate. Conclusion: Sodium glycocholate liposomes showed promising in vitro characteristics and have the potential to be able to deliver insulin orally.


Biomaterials | 2013

Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles

Xiuying Li; Shiyan Guo; Chunliu Zhu; Quanlei Zhu; Yong Gan; Jukka Rantanen; Ulrik Lytt Rahbek; Lars Hovgaard; Mingshi Yang

Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Quality by design – Spray drying of insulin intended for inhalation

Morten Jonas Maltesen; Simon Bjerregaard; Lars Hovgaard; Svend Havelund; Marco van de Weert

Quality by design (QBD) refers to a holistic approach towards drug development. Important parts of QBD include definition of final product performance and understanding of formulation and process parameters. Inhalation of proteins for systemic distribution requires specific product characteristics and a manufacturing process which produces the desired product. The objective of this study was to understand the spray drying process of insulin intended for pulmonary administration. In particular, the effects of process and formulation parameters on particle characteristics and insulin integrity were investigated. Design of experiments (DOE) and multivariate data analysis were used to identify important process parameters and correlations between particle characteristics. The independent parameters included the process parameters nozzle, feed, and drying air flow rate and drying air temperature along with the insulin concentration as a formulation parameter. The dependent variables included droplet size, geometric particle size, aerodynamic particle size, yield, density, tap density, moisture content, outlet temperature, morphology, and physical and chemical integrity. Principal component analysis was performed to find correlations between dependent and independent variables. Prediction equations were obtained for all dependent variables including both interaction and quadratic terms. Overall, the insulin concentration was found to be the most important parameter, followed by inlet drying air temperature and the nozzle gas flow rate. The insulin concentration mainly affected the particle size, yield and tap density, while the inlet drying air temperature mainly affected the moisture content. No change was observed in physical and chemical integrity of the insulin molecule.


International Journal of Nanomedicine | 2011

Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

Xiuying Li; Dan Chen; Chaoyi Le; Chunliu Zhu; Yong Gan; Lars Hovgaard; Mingshi Yang

Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery.

Collaboration


Dive into the Lars Hovgaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jukka Rantanen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Mingshi Yang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge