Lars Karlöf
Norwegian Polar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars Karlöf.
Reviews of Geophysics | 2008
Olaf Eisen; Massimo Frezzotti; Christophe Genthon; Elisabeth Isaksson; Olivier Magand; Michiel R. van den Broeke; Daniel A. Dixon; Alexey Ekaykin; Per Holmlund; Takao Kameda; Lars Karlöf; Susan Kaspari; Vladimir Ya. Lipenkov; Hans Oerter; Shuhei Takahashi; David G. Vaughan
The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
Journal of Glaciology | 1999
Michiel R. van den Broeke; Jan-Gunnar Winther; Elisabeth Isaksson; Jean Francis Pinglot; Lars Karlöf; Trond Eiken; Louk Conrads
Temperature, density and accumulation data were obtained from sha]low firn cores, drilled during an overland traverse through a previously unknown part of Dronning Maud Land, East Antarctica. The traverse area is characterised by high mountains that obstruct the ice flow, resulting in a sudden transition from the polar plateau to the coastal region. The spatial variations of potential temperature, ncar-surface firn density and accumulation suggest that katabatic winds are active in this region. Proxy wind data derived [rom fim-density profiles confirm that annual mean wind speed is strongly related to the magnitude of the surface slope. The high elevation of the ice sheet south of the mountains makes for a dry, cold climate, in which mass loss owing to sublimation is small and erosion of snow by the wind has a potentially large impact on the surface mass balance. A simple katabatic-wind model is used to explain the variations o[ accumulation along the traverse line in terms o[ divergence/convergence of the local transport o[ drifting snow.The resulting windand snowdrift patterns are c1ose]yconnected to the topography of the ice sheet: ridges are especially sensitive to erosion, while ice streams and other depressions act as collectors of drifting snow.
Journal of Glaciology | 2001
Elisabeth Isaksson; Veijo A. Pohjola; Tauno Jauhiainen; John C. Moore; Jean Francis Pinglot; Rein Vaikmäe; Roderik S. W. van de Wal; Jon Ove Hagen; Jüri Ivask; Lars Karlöf; Tõnu Martma; Harro A. J. Meijer; Robert Mulvaney; M. Thomassen; Michiel R. van den Broeke
A new ice core record from Lomonosovfonna, Svalbard: viewing the data between 1920-1997 in relation to present climate and environmental conditions
Journal of Geophysical Research | 2000
Lars Karlöf; Jan-Gunnar Winther; Elisabeth Isaksson; Jack Kohler; Jean Francis Pinglot; Frank Wilhelms; M. Hansson; Per Holmlund; M. Nyman; Rickard Pettersson; M. Stenberg; M. Thomassen; C. van der Veen; R. S. W. van de Wal
During the Nordic EPICA pre-site survey in Dronning Maud Land in 1997/1998 a 120 m long ice core was retrieved (76°00′S 08°03′W, 2400 m above sea level). The whole core has been measured using the electric conductivity measurement (ECM) and dielectric profiling (DEP) techniques, and the core chronology has been established by detecting major volcanic eruptions. In a nearby shallow core radioactive traces from nuclear tests conducted during the 1950s and 1960s have been identified. Altogether, 13 ECM and DEP peaks in the long core are identified as originating from specific volcanic eruptions. In addition two peaks of increased total β activity are identified in the short core. Accumulation is calculated as averages over the time periods between these dated events. Accumulation rate is 62 millimetres (w. eq./yr) for the last 181 years (1816 A.D. to present) and 61 mm w. eq./yr for the last 1457 years (540 A.D. to present). Our record shows an 8% decrease in accumulation between 1452 and 1641 A.D. (i.e. part of the Little Ice Age), compared to the long-term mean.
Antarctic Science | 2000
Glen E. Liston; Jan-Gunnar Winther; Oddbjørn Bruland; Hallgeir Elvehøy; Knut Sand; Lars Karlöf
Surface patterns of alternating snow and blue-ice bands are found in the Jutulgryta area of Dronning Maud Land, Antarctica. The snow-accumulation regions exist in the lee of blue-ice topographic ridges aligned perpendicular to winter winds. The snow bands are c. 500–2000 m wide and up to several kilometres long. In Jutulgryta, these features cover c. 5000 km2. These alternating snow and blue-ice bands are simulated using a snow transport and redistribution model, SnowTran-3D, that is driven with a winter cycle of observed daily screen-height air temperature, humidity, and wind speed and direction. The snow-transport model is coupled to a wind model that simulates wind flow over the relatively complex topography. Model results indicate that winter winds interact with the ice topographic features to produce alternating surface patterns of snow accumulation and erosion. In addition, model sensitivity simulations suggest that subtle topographic variations, on the order of 5m elevation change over a horizontal distance of 1 to 1.5 km, can lead to snow-accumulation variations that differ by a factor of six. This result is expected to have important consequences regarding the choice of sites for ice-coring efforts in Antarctica and elsewhere.
Journal of Glaciology | 2004
Coen Hofstede; Roderik S. W. van de Wal; K. A. Kaspers; Michiel R. van den Broeke; Lars Karlöf; Jan-Gunnar Winther; Elisabeth Isaksson; Gante Lappegard; Robert Mulvaney; Hans Oerter; Frank Wilhelms
This paper presents an overview of firn accumulation in Dronning Maud Land (DML), Antarctica, over the past 1000 years. It is based on a chronology established with dated volcanogenic horizons detected by dielectric profiling of six medium-length firn cores. In 1998 the British Antarctic Survey retrieved a medium-length firn core from western DML. During the Nordic EPICA (European Project for Ice Coring in Antarctica) traverse of 2000/01, a 160 m long firn core was drilled in eastern DML. Together with previously published data from four other medium-length ice cores from the area, these cores yield 50 possible volcanic horizons. All six firn cores cover a mutual time record until the 29th eruption. This overlapping period represents a period of approximately 1000 years, with mean values ranging between 43 and 71 mm w.e. The cores revealed no significant trend in snow accumulation. Running averages over 50 years, averaged over the six cores indicate temporal variation in the order of 5%. All cores display evidence of a minimum in the mean annual firn accumulation rate around AD 1500 and maxima around AD 1400 and 1800. The mean increase over the early 20th century was the strongest increase, but the absolute accumulation rate was not much higher than around AD 1400. In eastern DML a 13% increase is observed for the second half of the 20th century.
Journal of Glaciology | 2005
Lars Karlöf; Elisabeth Isaksson; Jan-Gunnar Winther; Niels S. Gundestrup; Harro A. J. Meijer; Robert Mulvaney; Michel Pourchet; Coen Hofstede; Gaute Lappegard; Rickard Pettersson; Michiel R. van den Broeke; Roderik S. W. van de Wal
We investigate and quantify the variability of snow accumulation rate around a medium-depth firn core (160 m) drilled in east Dronning Maud Land, Antarctica (75°00′S, 15°00′E; 3470 m h.a.e. (ellipsoidal height)). We present accumulation data from five snow pits and five shallow (20 m) firn cores distributed within a 3.5-7 km distance, retrieved during the 2000/01 Nordic EPICA (European Project for Ice Coring in Antarctica) traverse. Snow accumulation rates estimated for shorter periods show higher spatial variance than for longer periods. Accumulation variability as recorded from the firn cores and snow pits cannot explain all the variation in the ion and isotope time series; other depositional and post-depositional processes need to be accounted for. Through simple statistical analysis we show that there are differences in sensitivity to these processes between the analyzed species. Oxygen isotopes and sulphate are more conservative in their post-depositional behaviour than the more volatile acids, such as nitrate and to some degree chloride and methanesulphonic acid. We discuss the possible causes for the accumulation variability and the implications for the interpretation of ice-core records.
Journal of Geophysical Research | 2004
K. A. Kaspers; R. S. W. van de Wal; J. A. de Gouw; Coen Hofstede; M. R. van den Broeke; C. van der Veen; R. E. M. Neubert; Harro A. J. Meijer; Carl A. M. Brenninkmeijer; Lars Karlöf; Jan-Gunnar Winther
Firn air was sampled on the Antarctic plateau in Dronning Maud Land (DML), during the Norwegian Antarctic Research Expedition (NARE) 2000/2001. In this paper, we describe the analyses for methyl chloride and nonmethane hydrocarbons (NMHCs) in these firn air samples. For the first time, the NMHCs ethane, propane, and acetylene have been measured in Antarctic firn air, and concentration profiles for these gases have been derived. A one-dimensional numerical firn air diffusion model was used to interpret the measured profiles and to derive atmospheric concentrations as a function of time. The atmospheric trends we derived for the NMHC and methyl chloride at DML cover the period from 1975 to 2000. Methyl chloride shows a decreasing trend of 1.2 +/- 0.6 ppt per year (annual mean concentration 548 +/- 32 ppt). For ethane we found an increasing trend of 1.6 +/- 0.6 ppt per year (annual mean concentration 241 +/- 12 ppt). The concentrations of propane and acetylene appear to be constant over the period 1975-2000, with annual mean concentrations of 30 +/- 4 ppt for propane and 24 +/- 2 ppt for acetylene.
Antarctic Science | 2006
M. Kaczmarska; Elisabeth Isaksson; Lars Karlöf; Ola Brandt; Jan-Gunnar Winther; R. S. W. van de Wal; M. R. van den Broeke; Sigfus J Johnsen
Measurement of light intensity transmission was carried out on an ice core S100 from coastal Dronning Maud Land (DML). Ice lenses were observed in digital pictures of the core and recorded as peaks in the light transmittance record. The frequency of ice layer occurrence was compared with climate proxy data (e.g. oxygen isotopes), annual accumulation rate derived from the same ice core, and available meteorological data from coastal stations in DML. The mean annual frequency of melting events remains constant for the last ∼150 years. However, fewer melting features are visible at depths corresponding to approximately 1890–1930 AD and the number of ice lenses increases again after 1930 AD. Most years during this period have negative summer temperature anomalies and positive annual accumulation anomalies. The increase in melting frequency around ∼1930 AD corresponds to the beginning of a decreasing trend in accumulation and an increasing trend in oxygen isotope record. On annual time scales, a relatively good match exists between ice layer frequencies and mean summer temperatures recorded at nearby meteorological stations (Novolazarevskaya, Sanae, Syowa and Halley) only for some years. There is a poor agreement between melt feature frequencies and oxygen isotope records on longer time scales. Melt layer frequency proved difficult to explain with standard climate data and ice core derived proxies. These results suggest a local character for the melt events and a strong influence of surface topography.
Journal of Geophysical Research | 2004
K. A. Kaspers; R. S. W. van de Wal; J. A. de Gouw; Coen Hofstede; M. R. van den Broeke; C. H. Reijmer; C. van der Veen; R. E. M. Neubert; Harro A. J. Meijer; Carl A. M. Brenninkmeijer; Lars Karlöf; Jan-Gunnar Winther
[1] This paper presents atmospheric concentrations of ethane, propane, acetylene, and methyl chloride, inferred from firn air by using a numerical one-dimensional firn diffusion model. The firn air was collected on the Antarctic plateau in Dronning Maud Land during the Norwegian Antarctic Research Expedition (NARE) 2000/2001. The influences of seasonal variations in temperature and pressure and the variation in accumulation rate were studied and are not negligible, but appear to cancel each other out if all variability is taken into account. This paper also demonstrates that firn air from the uppermost firn layer (30 m) can be used to derive seasonal cycles of these trace gases, without needing a year-round facility. These cycles display higher atmospheric mixing ratios during the Antarctic winter and lower atmospheric mixing ratios in summer. The cycles for the year 2000 show amplitudes of 140 +/- 25 ppt for ethane, 30 +/- 10 ppt for propane, 24 +/- 6 ppt for acetylene, and 40 +/- 20 ppt for methyl chloride. For ethane and propane the amplitudes and months of maximum atmospheric concentration (phase) are in reasonable agreement with year-round measurements at the South Pole and Baring Head (New Zealand). The amplitudes for methyl chloride and acetylene are significantly greater than seen in year-round measurements at the South Pole and at Neumayer (Antarctica), although the phase is in line. While biomass burning and removal by OH radicals can partially explain these large amplitudes, the exact cause still remains unclear for methyl chloride and acetylene.