Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Mølbak is active.

Publication


Featured researches published by Lars Mølbak.


Environmental Microbiology | 2009

Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host.

Thomas Dyrmann Leser; Lars Mølbak

Mammals live in a homeostatic symbiosis with their gastrointestinal microbiota. The mammalian host provides the microbiota with nutrients and a stable environment; whereas the microbiota helps shaping the hosts gut mucosa and provides nutritional contributions. Microorganisms start colonizing the gut immediately after birth followed by a succession of populations until a stable, adult microbiota has been established. However, physiological conditions differ substantially among locations in the gut and determine bacterial density and diversity. While Firmicutes and Bacteroidetes dominate the gut microbiota in all mammals, the bacterial genera and species diversity is huge and reflects mammalian phylogeny. The main function of the gastrointestinal epithelium is to absorb nutrients and to retain water and electrolytes, yet at the same time it is an efficient barrier against harmful compounds and microorganisms, and is able to neutralize antagonists coincidentally breaching the barrier. These processes are influenced by the microbiota, which modify epithelial expression of genes involved in nutrient uptake and metabolism, mucosal barrier function, xenobiotic metabolism, enteric nervous system and motility, hormonal and maturational responses, angiogenesis, cytoskeleton and extracellular matrix, signal transduction, and general cellular functions. Whereas such effects are local at the gut epithelium they may eventually have systemic consequences, e.g. on body weight and composition.


Applied and Environmental Microbiology | 2000

Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates

Cayo Ramos; Lars Mølbak; Søren Molin

ABSTRACT The growth activity of Pseudomonas putida cells colonizing the rhizosphere of barley seedlings was estimated at the single-cell level by monitoring ribosomal contents and synthesis rates. Ribosomal synthesis was monitored by using a system comprising a fusion of the ribosomal Escherichia coli rrnBP1 promoter to a gene encoding an unstable variant of the green fluorescent protein (Gfp). Gfp expression in a P. putida strain carrying this system inserted into the chromosome was strongly dependent on the growth phase and growth rate of the strain, and cells growing exponentially at rates of ≥0.17 h−1 emitted growth rate-dependent green fluorescence detectable at the single-cell level. The single-cell ribosomal contents were very heterogeneous, as determined by quantitative hybridization with fluorescently labeled rRNA probes in P. putida cells extracted from the rhizosphere of 1-day-old barley seedlings grown under sterile conditions. After this, cells extracted from the root system had ribosomal contents similar to those found in starved cells. There was a significant decrease in the ribosomal content of P. putida cells when bacteria were introduced into nonsterile bulk or rhizosphere soil, and the Gfp monitoring system was not induced in cells extracted from either of the two soil systems. The monitoring system used permitted nondestructive in situ detection of fast-growing bacterial microcolonies on the sloughing root sheath cells of 1- and 2-day-old barley seedlings grown under sterile conditions, which demonstrated that it may be possible to use the unstable Gfp marker for studies of transient gene expression in plant-microbe systems.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition

Charlotte R. Bjornvad; Thomas Thymann; Nicolaas E. P. Deutz; Douglas G. Burrin; Søren Krogh Jensen; Bent Borg Jensen; Lars Mølbak; Mette Boye; Lars-Inge Larsson; Mette Schmidt; Kim F. Michaelsen; Per T. Sangild

Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20-40 h), with or without a preceding 2- to 3-day TPN period (n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60-80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sows colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43-170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs

Thomas Thymann; Hanne Kristine Møller; Barbara Stoll; Ann Cathrine Findal Støy; Randal K. Buddington; Stine B. Bering; Bent Borg Jensen; Oluyinka O. Olutoye; Richard H. Siggers; Lars Mølbak; Per T. Sangild; Douglas G. Burrin

Necrotizing enterocolitis (NEC) remains the most severe gastrointestinal disorder in preterm infants. It is associated with the initiation of enteral nutrition and may be related to immature carbohydrate digestive capacity. We tested the hypothesis that a formula containing maltodextrin vs. a formula containing lactose as the principal source of carbohydrate would predispose preterm pigs to a higher NEC incidence. Cesarean-derived preterm pigs were given total parenteral nutrition for 48 h followed by total enteral nutrition with a lactose-based (n = 11) or maltodextrin-based (n = 11) formula for 36 h. A higher incidence (91% vs. 27%) and severity (score of 3.3 vs. 1.8) of NEC were observed in the maltodextrin than in the lactose group. This higher incidence of NEC in the maltodextrin group was associated with significantly lower activities of lactase, maltase, and aminopeptidase; reduced villus height; transiently reduced in vivo aldohexose uptake; and reduced ex vivo aldohexose uptake capacity in the middle region of the small intestine. Bacterial diversity was low for both diets, but alterations in bacterial composition and luminal concentrations of short-chain fatty acids were observed in the maltodextrin group. In a second study, we quantified net portal absorption of aldohexoses (glucose and galactose) during acute jejunal infusion of a maltodextrin- or a lactose-based formula (n = 8) into preterm pigs. We found lower net portal aldohexose absorption (4% vs. 42%) and greater intestinal recovery of undigested carbohydrate (68% vs. 27%) in pigs acutely perfused with the maltodextrin-based formula than those perfused with the lactose-based formula. The higher digestibility of the lactose than the maltodextrin in the formulas can be attributed to a 5- to 20-fold higher hydrolytic activity of tissue-specific lactase than maltases. We conclude that carbohydrate maldigestion is sufficient to increase the incidence and severity of NEC in preterm pigs.


BMC Microbiology | 2011

Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis

Birgitte Smith; Susan Bodé; Bodil L. Petersen; Tim Kåre Jensen; Christian B. Pipper; Julie T. Kloppenborg; Mette Boye; Karen A. Krogfelt; Lars Mølbak

BackgroundNecrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in newborn neonates. Bacteria are believed to be important in the pathogenesis of NEC but bacterial characterization has only been done on human faecal samples and experimental animal studies. The aim of this study was to investigate the microbial composition and the relative number of bacteria in inflamed intestinal tissue surgically removed from neonates diagnosed with NEC (n = 24). The bacterial populations in the specimens were characterized by laser capture microdissection and subsequent sequencing combined with fluorescent in situ hybridization (FISH), using bacterial rRNA-targeting oligonucleotide probes.ResultsBacteria were detected in 22 of the 24 specimens, 71% had moderate to high densities of bacteria. The phyla detected by 16S rRNA gene sequencing were: Proteobacteria (49.0%), Firmicutes (30.4%), Actinobacteria (17.1%) and Bacteroidetes (3.6%). A major detected class of the phylum Proteobacteria belonged to δ-proteobacteria. Surprisingly, Clostridium species were only detected in 4 of the specimens by FISH, but two of these specimens exhibited histological pneumatosis intestinalis and both specimens had a moderate to a high density of C. butyricum and C. parputrificum detected by using species specific FISH probes. A 16S rRNA gene sequence tag similar to Ralstonia species was detected in most of the neonatal tissues and members of this genus have been reported to be opportunistic pathogens but their role in NEC has still to be clarified.ConclusionIn this study, in situ identification and community analysis of bacteria found in tissue specimens from neonates with NEC, were analysed for the first time. Although a large variability of bacteria was found in most of the analyzed specimens, no single or combination of known potential pathogenic bacteria species was dominating the samples suggestive NEC as non-infectious syndrome. However there was a significant correlation between the presence of C. butyricum & C. parputrificum and histological pneumatosis intestinalis. Finally this study emphasizes the possibility to examine the microbial composition directly on excised human tissues to avoid biases from faecal samples or culturing.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets

Michael Ladegaard Jensen; Thomas Thymann; Malene Skovsted Cilieborg; Mikkel Lykke; Lars Mølbak; Bent Borg Jensen; Mette Schmidt; Denise Kelly; Imke Mulder; Douglas G. Burrin; Per T. Sangild

Preterm birth, bacterial colonization, and formula feeding predispose to necrotizing enterocolitis (NEC). Antibiotics are commonly administered to prevent sepsis in preterm infants, but it is not known whether this affects intestinal immunity and NEC resistance. We hypothesized that broad-spectrum antibiotic treatment improves NEC resistance and intestinal structure, function, and immunity in neonates. Caesarean-delivered preterm pigs were fed 3 days of parenteral nutrition followed by 2 days of enteral formula. Immediately after birth, they were assigned to receive either antibiotics (oral and parenteral doses of gentamycin, ampicillin, and metronidazole, ANTI, n = 11) or saline in the control group (CON, n = 13), given twice daily. NEC lesions and intestinal structure, function, microbiology, and immunity markers were recorded. None of the ANTI but 85% of the CON pigs developed NEC lesions by day 5 (0/11 vs. 11/13, P < 0.05). ANTI pigs had higher intestinal villi (+60%), digestive enzyme activities (+53-73%), and goblet cell densities (+110%) and lower myeloperoxidase (-51%) and colonic microbial density (10(5) vs. 10(10) colony-forming units, all P < 0.05). Microarray transcriptomics showed strong downregulation of genes related to inflammation and innate immune response to microbiota and marked upregulation of genes related to amino acid metabolism, in particular threonine, glucose transport systems, and cell cycle in 5-day-old ANTI pigs. In a follow-up experiment, 5 days of antibiotics prevented NEC at least until day 10. Neonatal prophylactic antibiotics effectively reduced gut bacterial load, prevented NEC, intestinal atrophy, dysfunction, and inflammation and enhanced expression of genes related to gut metabolism and immunity in preterm pigs.


Pediatric Research | 2011

Preterm birth and necrotizing enterocolitis alter gut colonization in pigs.

Malene Skovsted Cilieborg; Mette Boye; Lars Mølbak; Thomas Thymann; Per T. Sangild

Necrotizing enterocolitis (NEC) in preterm neonates is dependent on bacterial colonization, but it remains unclear whether a particular microbiota or specific pathogens are involved. We hypothesized that gut colonization differs between preterm and term neonates and that overgrowth of Clostridium perfringens predisposes to NEC. By using terminal-RFLP and FISH, we characterized the gut microbiota of preterm, caesarean-delivered, formula-fed pigs (n = 44) with or without NEC and of formula- or colostrum-fed term, and vaginally born pigs (n = 13). A different microbiota with high C. perfringens abundance was observed in preterm pigs with NEC compared with healthy individuals. However, immunization against C. perfringens toxins did not prevent NEC, and C. perfringens inoculation (3.6 × 108 cfu/d) failed to induce NEC (n = 16), whereas prophylactic broad-spectrum antibiotics treatment prevented NEC (n = 24). Colonization in both groups of term pigs differed from preterm pigs and was dominated by Lactobacilli spp. In conclusion, gestational age (GA) and NEC influence neonatal gut colonization, whereas diet has minor effects. C. perfringens is more abundant in pigs with NEC but rather as a consequence than a cause of disease. The general bacterial load and underdeveloped gut immune responses in preterm neonates seem more important for NEC development than specific pathogens.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates

Jayda Siggers; Mette Viberg Østergaard; Richard H. Siggers; Kerstin Skovgaard; Lars Mølbak; Thomas Thymann; Mette Schmidt; Hanne Kristine Møller; Stig Purup; Lisbeth Nielsen Fink; Hanne Frøkiær; Mette Boye; Per T. Sangild; Stine B. Bering

Preterm neonates are susceptible to gastrointestinal disorders such as necrotizing enterocolitis (NEC). Maternal milk and colostrum protects against NEC via growth promoting, immunomodulatory, and antimicrobial factors. The fetal enteral diet amniotic fluid (AF), contains similar components, and we hypothesized that postnatal AF administration reduces inflammatory responses and NEC in preterm neonates. Preterm pigs (92% gestation) were delivered by caesarean section and fed parental nutrition (2 days) followed by enteral (2 days) porcine colostrum (COLOS, n = 7), infant formula (FORM, n = 13), or AF supplied before and after introduction of formula (AF, n = 10) in experiment 1, and supplied only during the enteral feeding period in experiment 2 (FORM, n = 16; AF, n = 14). The NEC score was reduced in both AF and COLOS pigs, relative to FORM, when AF was provided prior to full enteral feeding (9.9 and 7.7 compared with 17.3, P < 0.05). There was no effect of AF when provided only during enteral feeding. AF pigs showed decreased bacterial abundance in colon and intestinal inflammation-related genes (e.g., TNF-α, IL-1α, IL-6, NOS) were downregulated, relative to FORM pigs with NEC. Anti-inflammatory properties of AF were supported by delayed maturation and decreased TNF-α production in murine dendritic cells, as well as increased proliferation and migration, and downregulation of IL-6 expression in intestinal cells (IEC-6, IPEC-J2). Like colostrum, AF may reduce NEC development in preterm neonates by suppressing the proinflammatory responses to enteral formula feeding and gut colonization when provided before the onset of NEC.


BMC Microbiology | 2013

Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs

Rebecca Pedersen; Anders Daniel Andersen; Lars Mølbak; Jan Stagsted; Mette Boye

BackgroundObesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR).ResultsA positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P<0.0001) and in non-cloned control pigs (r=0.9, P<0.0001). Shannon Weaver and principal component analysis (PCA) of the terminal restriction fragments (T-RFs) revealed no differences in the bacterial composition or variability of the fecal microbiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; P<0.02) and non cloned-control pigs (r=0.45; P<0.006), and negatively with the abundance of Bacteroidetes in cloned pigs (r=−0.33, P<0.04), but not in the non-cloned control pigs.ConclusionThe cloned pigs did not have reduced inter-individual variation as compared to non-cloned pigs in regard to their gut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an increase in the relative abundance of Firmicutes over time. Our results suggest that cloned pigs are not a more suitable animal model for gut microbiota-obesity related studies than non-cloned pigs. This study is the first to evaluate if cloned pigs provide a better animal model than conventional pigs in diet-intervention, obesity and gut microbiota research.


BMC Microbiology | 2011

The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing

Steen Nordentoft; Lars Mølbak; Lotte Bjerrum; Jantina De Vylder; Filip Van Immerseel; Karl Pedersen

BackgroundIn the EU conventional cages for laying hens are forbidden beginning in January 2012, however concerns about a higher transmission rate of Salmonella in alternative cages systems have been raised. The extent to which cage systems may affect the intestinal microbiota of laying hens is not known, and different microbiota may demonstrate different resistance towards colonization with Salmonella. To investigate this, ileal and caecal samples from two experimental studies where laying hens were inoculated with Salmonella Enteritidis and housed in different systems (conventional cage, furnished cage or aviary), were compared using Terminal Restriction Fragment Length Polymorphism (T-RFLP). The distribution of genera in the microbiota in caecum was furthermore described by next generation sequencing of 16S rDNA libraries.ResultsHens in the same cage type developed similar T-RFLP fingerprints of the ileal and caecal microbiota, and these could be separated from layers in the other cages types. No significant difference in the fingerprint profiles could be observed between Salmonella positive and negative samples from same cage. By deep sequencing of 16S rDNA libraries from caecum, 197 different Operational Taxonomic Units (OTU) were identified, and 195 and 196 OTU respectively, were found in hens in aviary and furnished cages, but only 178 OTU of these were recovered from conventional cages. The ratio between the dominating phyla or families and genera in the microbiota remained fairly constant throughout the study. Faecalibacterium and Butyricimonas were the most prevalent genera found in the caecal microbiota of layers irrespective of the cage type.ConclusionsHens confined in the same cage group tend to develop similar microbiota in their ileum and caecum possibly due to isolation, while differences in the microbiota between cages may be caused by environmental or individual bird factors. Although the cages type had influence on composition of the microbiota in the layers by promoting higher diversity in furnished and aviary systems, we did not observe differences in colonization and excretion pattern of Salmonella from these groups. We suggest, that differences in group size and exposure to a more faecally contaminated environment in the alternative systems may explain the observed differences in diversity of the caecal microbiota.

Collaboration


Dive into the Lars Mølbak's collaboration.

Top Co-Authors

Avatar

Mette Boye

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Thymann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Per T. Sangild

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Tim Kåre Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Skovgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette Nygaard Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Dorte Lau Baggesen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Mette Schmidt

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge