Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette Boye is active.

Publication


Featured researches published by Mette Boye.


Applied and Environmental Microbiology | 2002

Culture-independent analysis of gut bacteria : the pig gastrointestinal tract microbiota revisited

Thomas D. Leser; Joanna Zeitman Amenuvor; Tim Kåre Jensen; R.H. Lindecrona; Mette Boye; Kristian Møller

ABSTRACT The phylogenetic diversity of the intestinal bacterial community in pigs was studied by comparative 16S ribosomal DNA (rDNA) sequence analysis. Samples were collected from a total of 24 pigs representing a variety of diets, ages, and herd health status. A library comprising 4,270 cloned 16S rDNA sequences obtained directly by PCR from 52 samples of either the ileum, the cecum, or the colon was constructed. In total, 375 phylotypes were identified using a 97% similarity criterion. Three hundred nine of the phylotypes (83%) had a <97% sequence similarity to any sequences in the database and may represent yet-uncharacterized bacterial genera or species. The phylotypes were affiliated with 13 major phylogenetic lineages. Three hundred four phylotypes (81%) belonged to the low-G+C gram-positive division, and 42 phylotypes (11.2%) were affiliated with the Bacteroides and Prevotella group. Four clusters of phylotypes branching off deeply within the low-G+C gram-positive bacteria and one in the Mycoplasma without any cultured representatives were found. The coverage of all the samples was 97.2%. The relative abundance of the clones approximated a lognormal distribution; however, the phylotypes detected and their abundance varied between two libraries from the same sample. The results document that the intestinal microbial community is very complex and that the majority of the bacterial species colonizing the gastrointestinal tract in pigs have not been characterized.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition

Charlotte R. Bjornvad; Thomas Thymann; Nicolaas E. P. Deutz; Douglas G. Burrin; Søren Krogh Jensen; Bent Borg Jensen; Lars Mølbak; Mette Boye; Lars-Inge Larsson; Mette Schmidt; Kim F. Michaelsen; Per T. Sangild

Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20-40 h), with or without a preceding 2- to 3-day TPN period (n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60-80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sows colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43-170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.


Early Human Development | 2012

Bacterial colonization and gut development in preterm neonates

Malene Skovsted Cilieborg; Mette Boye; Per T. Sangild

Necrotizing enterocolitis (NEC) develops in 5-10% of preterm infants in association with enteral feeding and bacterial colonization. It remains unclear how diet and bacteria interact to protect or provoke the immature gastrointestinal tract. Understanding the factors that control bacterial colonization may provide the clue to prevent NEC, and studies in infants must be combined with animal models to understand the mechanisms of the microbiota-epithelium interactions. Analyses of infant fecal samples show that the density and distribution of bacterial species are highly variable with no consistent effects of gestational age, delivery mode, diet or probiotic administration, while low bacterial diversity and bacterial overgrowth are commonly associated with NEC. A series of recent studies in preterm pigs show that the mucosa-associated microbiota is affected by delivery method, prematurity and NEC progression and that diet has limited effects. Overgrowth of specific groups (e.g. Clostridia) appears to be a consequence of NEC, rather than the cause of NEC. Administration of probiotics either decreases or increases NEC sensitivity in preterm pigs, while in preterm infants probiotics have generally decreased NEC incidence and overall mortality. The optimal nature and amount of probiotic bacteria are unknown and host defense factors appear more important for NEC sensitivity than the nature of the gut microbiota. Host defense is improved by feeding the optimal amount of enteral diets, such as mothers colostrum or milk, that help the immature intestinal immune system to respond appropriately to the highly variable bacterial colonization.


Journal of Clinical Microbiology | 2008

Evidence of Multiple Treponema Phylotypes Involved in Bovine Digital Dermatitis as Shown by 16S rRNA Gene Analysis and Fluorescence In Situ Hybridization

Kirstine Klitgaard; Mette Boye; Nynne Capion; Tim Kåre Jensen

ABSTRACT The etiopathogenesis of the skin disease digital dermatitis (DD), an important cause of lameness in cattle, remains uncertain. Microscopically, the disease appears to be polymicrobial, with spirochetes as the predominant bacteria. The objective of this study was to identify the main part of the bacteria involved in DD lesions of cattle by using culture-independent molecular methods. Ten different phylotypes of Treponema were identified either by 16S rRNA gene sequencing of bacteria from DD lesions or by fluorescence in situ hybridization (FISH) analysis using phylotype-specific 16S rRNA-directed oligonucleotide probes. Two phylotypes, phylotype 1 (PT1) and PT2, were not closely related to any characterized treponemal species. PT7 was 99.3% identical to Treponema denticola, while PT9 resembled T. vincentii by 96%. The remaining phylotypes, PT3, PT4, PT5, PT6, and PT8, and Treponema brennaborense had previously been isolated from DD lesions. Forty DD biopsy specimens were examined for Treponema by FISH. With one exception, all of the biopsy specimens revealed epidermotropic, intermingled infection with three or more different phylotypes (mean, 4.7). The most prevalent species were PT1 (95%), PT6 (93%), and PT3 (85%). While colonization by PT3 was confined to the surface of the epidermis, both PT1 and PT6 invaded deep into the stratum spinosum and were seen in ulcerated dermal papillae. In two cases, all 10 phylotypes were demonstrated. Furthermore, FISH with a Treponema group-specific probe showed that Treponema accounted for more than 90% of the total bacterial population in the biopsy specimens. These data strongly suggest that a group of apparently symbiotic Treponema species are involved as primary bacterial pathogens in DD.


Journal of Nutritional Biochemistry | 2011

Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis

Richard H. Siggers; Jayda Siggers; Thomas Thymann; Mette Boye; Per T. Sangild

The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mothers milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.


Journal of Clinical Microbiology | 2001

Diagnostic examination of human intestinal spirochetosis by fluorescent in situ hybridization for Brachyspira aalborgi, Brachyspira pilosicoli, and other species of the genus Brachyspira (Serpulina).

Tim Kåre Jensen; Mette Boye; Peter Ahrens; B. Korsager; Peter Stubbe Teglbjærg; Christian Fredrik Lindboe; Kristian Møller

ABSTRACT Human intestinal spirochetosis, characterized by end-on attachment of densely packed spirochetes to the epithelial surface of the large intestines as a fringe has been associated with the weakly beta-hemolytic spirochetes Brachyspira aalborgi andBrachyspira (Serpulina)pilosicoli. In this study, fluorescent in situ hybridization with oligonucleotide probes targeting 16S or 23S rRNA ofB. aalborgi, B. pilosicoli, and the genusBrachyspira was applied to 40 sections of formalin-fixed, paraffin-embedded intestinal biopsy specimens from 23 Danish and 15 Norwegian patients with histologic evidence of intestinal spirochetosis. Five biopsy specimens from patients without intestinal spirochetosis and three samples from pigs with experimental B. pilosicoli colitis were examined as well. In addition, the 16S ribosomal DNAs of two clinical isolates of B. aalborgi were sequenced, and a PCR procedure was developed for the identification ofB. aalborgi in cultures. The genotypic characteristics of the two clinical isolates showed very high (99.5%) similarity with two existing isolates, the type strain of B. aalborgi and a Swedish isolate. Hybridization with the Brachyspiragenus-specific probe revealed a brightly fluorescing fringe of spirochetes on the epithelia of 39 biopsy specimens, whereas 1 biopsy specimen was hybridization negative. The spirochetes in biopsy specimens from 13 Danish and 8 Norwegian patients (55.3%) were identified as B. aalborgi. The spirochetes in the biopsy specimens from the other 17 patients hybridized only with theBrachyspira probe, possibly demonstrating the involvement of as-yet-uncharacterized Brachyspira spirochetes in human intestinal spirochetosis.


Veterinary Research | 2009

Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs.

Kerstin Skovgaard; Shila Mortensen; Mette Boye; Karin T. Poulsen; Fiona M. Campbell; P. David Eckersall; Peter M. H. Heegaard

The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues.


PLOS ONE | 2013

Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome

Rebecca Pedersen; Hans-Christian Ingerslev; Michael Sturek; Mouhamad Alloosh; Susanna Cirera; Berit Christoffersen; S.G. Moesgaard; Niels Larsen; Mette Boye

Background Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs. Methods and Findings The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs’ cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine. Conclusion Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs.


BMC Microbiology | 2011

Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis

Birgitte Smith; Susan Bodé; Bodil L. Petersen; Tim Kåre Jensen; Christian B. Pipper; Julie T. Kloppenborg; Mette Boye; Karen A. Krogfelt; Lars Mølbak

BackgroundNecrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in newborn neonates. Bacteria are believed to be important in the pathogenesis of NEC but bacterial characterization has only been done on human faecal samples and experimental animal studies. The aim of this study was to investigate the microbial composition and the relative number of bacteria in inflamed intestinal tissue surgically removed from neonates diagnosed with NEC (n = 24). The bacterial populations in the specimens were characterized by laser capture microdissection and subsequent sequencing combined with fluorescent in situ hybridization (FISH), using bacterial rRNA-targeting oligonucleotide probes.ResultsBacteria were detected in 22 of the 24 specimens, 71% had moderate to high densities of bacteria. The phyla detected by 16S rRNA gene sequencing were: Proteobacteria (49.0%), Firmicutes (30.4%), Actinobacteria (17.1%) and Bacteroidetes (3.6%). A major detected class of the phylum Proteobacteria belonged to δ-proteobacteria. Surprisingly, Clostridium species were only detected in 4 of the specimens by FISH, but two of these specimens exhibited histological pneumatosis intestinalis and both specimens had a moderate to a high density of C. butyricum and C. parputrificum detected by using species specific FISH probes. A 16S rRNA gene sequence tag similar to Ralstonia species was detected in most of the neonatal tissues and members of this genus have been reported to be opportunistic pathogens but their role in NEC has still to be clarified.ConclusionIn this study, in situ identification and community analysis of bacteria found in tissue specimens from neonates with NEC, were analysed for the first time. Although a large variability of bacteria was found in most of the analyzed specimens, no single or combination of known potential pathogenic bacteria species was dominating the samples suggestive NEC as non-infectious syndrome. However there was a significant correlation between the presence of C. butyricum & C. parputrificum and histological pneumatosis intestinalis. Finally this study emphasizes the possibility to examine the microbial composition directly on excised human tissues to avoid biases from faecal samples or culturing.


Environment International | 2001

Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

Lars Bogø Jensen; Suraj B. Baloda; Mette Boye; Frank Møller Aarestrup

From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil, when possible, were collected. Soil from a well-characterized Danish farm soil (Højbakkegaard) was collected for comparison. The Pseudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste.

Collaboration


Dive into the Mette Boye's collaboration.

Top Co-Authors

Avatar

Tim Kåre Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lars Mølbak

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Per T. Sangild

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Thomas Thymann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Kristian Møller

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Kerstin Skovgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Hans-Christian Ingerslev

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Inger Dalsgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Kirstine Klitgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Leser

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge