Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Plate is active.

Publication


Featured researches published by Lars Plate.


Molecular Cell | 2012

Nitric Oxide Modulates Bacterial Biofilm Formation through a Multicomponent Cyclic-di-GMP Signaling Network

Lars Plate; Michael A. Marletta

Nitric oxide (NO) signaling in vertebrates is well characterized and involves the heme-nitric oxide/oxygen-binding (H-NOX) domain of soluble guanylate cyclase as a selective NO sensor. In contrast, little is known about the biological role or signaling output of bacterial H-NOX proteins. Here, we describe a molecular pathway for H-NOX signaling in Shewanella oneidensis. NO stimulates biofilm formation by controlling the levels of the bacterial secondary messenger cyclic diguanosine monophosphate (c-di-GMP). Phosphotransfer profiling was used to map the connectivity of a multicomponent signaling network that involves integration from two histidine kinases and branching to three response regulators. A feed-forward loop between response regulators with phosphodiesterase domains and phosphorylation-mediated activation intricately regulated c-di-GMP levels. Phenotypic characterization established a link between NO signaling and biofilm formation. Cellular adhesion may provide a protection mechanism for bacteria against reactive and damaging NO. These results are broadly applicable to H-NOX-mediated NO signaling in bacteria.


Trends in Biochemical Sciences | 2013

Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior

Lars Plate; Michael A. Marletta

Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain

Christina B. Cooley; Lisa M. Ryno; Lars Plate; Gareth J. Morgan; John D. Hulleman; Jeffery W. Kelly; R. Luke Wiseman

Significance Light-chain amyloidosis (AL) is a devastating human disease involving the clonal expansion of a plasma cell and the secretion of destabilized, amyloidogenic immunoglobulin light chains (LCs). Secreted amyloidogenic LCs aggregate extracellularly, leading to proteotoxicity on distal tissues. Available therapeutic strategies to treat AL specifically target the cancerous plasma cell population. While this approach is effective in ∼70% of patients, patients who present with substantial LC-related organ proteotoxicity are generally too sick to tolerate standard chemotherapeutics. Here, we show that stress-independent activation of unfolded protein response-associated transcription factors selectively reduces secretion of amyloidogenic LCs and decreases extracellular soluble LC aggregates associated with proteotoxicity in AL. These results identify a promising therapeutic strategy to treat AL patients unserved by current treatments. Light-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∼70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy. Thus, identifying new therapeutic strategies to alleviate LC organ proteotoxicity should allow AL patients with significant cardiac and/or renal involvement to subsequently tolerate established chemotherapy treatments. Using a small-molecule screening approach, the unfolded protein response (UPR) was identified as a cellular signaling pathway whose activation selectively attenuates secretion of amyloidogenic LC, while not affecting secretion of a nonamyloidogenic LC. Activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the absence of stress recapitulates the selective decrease in amyloidogenic LC secretion by remodeling the endoplasmic reticulum proteostasis network. Stress-independent activation of XBP1s, or especially ATF6, also attenuates extracellular aggregation of amyloidogenic LC into soluble aggregates. Collectively, our results show that stress-independent activation of these adaptive UPR transcription factors offers a therapeutic strategy to reduce proteotoxicity associated with LC aggregation.


eLife | 2016

Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

Lars Plate; Christina B. Cooley; John J. Chen; Ryan Paxman; Ciara M. Gallagher; Franck Madoux; Joseph C. Genereux; Wesley Dobbs; Dan Garza; Timothy P. Spicer; Louis Scampavia; Steven J. Brown; Hugh Rosen; Evan T. Powers; Peter Walter; Peter Hodder; R. Luke Wiseman; Jeffery W. Kelly

Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001


Journal of the American Chemical Society | 2016

Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue

Wentao Chen; Jiajia Dong; Lars Plate; David E. Mortenson; Gabriel J. Brighty; Suhua Li; Yu Liu; Andrea Galmozzi; Peter S. Lee; Jonathan J. Hulce; Benjamin F. Cravatt; Enrique Saez; Evan T. Powers; Ian A. Wilson; K. Barry Sharpless; Jeffery W. Kelly

Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function.


Angewandte Chemie | 2010

Determinants of Ligand Affinity and Heme Reactivity in H-NOX Domains**

Emily E. Weinert; Lars Plate; Charlotte A. Whited; Charles Olea; Michael A. Marletta

O_2 balks at extra bulk: The introduction of distal-pocket bulk into the Thermoanaerobacter tengcongensis H-NOX (heme nitric oxide/oxygen) domain caused key changes in the protein structure. Rearrangement of the heme pocket resulted in dramatic differences in O_2-binding kinetics and heme reactivity (see picture).


Analytical Biochemistry | 2010

Use of a Semisynthetic Epitope to Probe Histidine Kinase Activity and Regulation

Hans K. Carlson; Lars Plate; Mark S. Price; Jasmina J. Allen; Kevan M. Shokat; Michael A. Marletta

Histidine-aspartic acid phosphotransfer pathways are central components of prokaryotic signal transduction pathways and are also found in many eukaryotes. Tools to study histidine kinases, however, are currently quite limited. In this article, we present a new tool to study histidine-aspartic acid phosphotransfer pathways. We show that many histidine kinases will accept ATPgammaS as a substrate to form a stable thiophosphohistidine even when they do not form stable phosphohistidines using the natural substrate ATP. An antibody that has previously been used to detect thiophosphorylated serine, threonine, and tyrosine residues is shown to recognize thiophosphohistidine and thiophosphoaspartic acid residues. Histidine kinase autothiophosphorylation is regulated by other protein sensor domains in the same way as autophosphorylation, and thiophosphate is transferred to downstream aspartic acid containing response regulators.


Biochemistry | 2008

Methodology To Probe Subunit Interactions in Ribonucleotide Reductases

A. Quamrul Hassan; Yongting Wang; Lars Plate; JoAnne Stubbe

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides, providing the monomeric precursors required for DNA replication and repair. Escherichia coli RNR is a 1:1 complex of two homodimeric subunits, alpha2 and beta2. The interactions between alpha2 and beta2 are thought to be largely associated with the C-terminal 20 amino acids (residues 356-375) of beta2. To study subunit interactions, a single reactive cysteine has been introduced into each of 15 positions along the C-terminal tail of beta2. Each cysteine has been modified with the photo-cross-linker benzophenone (BP) and the environmentally sensitive fluorophore dimethylaminonaphthalene (DAN). Each construct has been purified to homogeneity and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electrospray ionization mass spectrometry (ESI-MS). Each BP-beta2 has been incubated with 1 equiv of alpha2 and photolyzed, and the results have been analyzed quantitatively by SDS-PAGE. Each DAN-beta2 was incubated with a 50-fold excess of alpha2, and the emission maximum and intensity were measured. A comparison of the results from the two sets of probes reveals that sites with the most extensive cross-linking are also associated with the greatest changes in fluorescence. Titration of four different DAN-beta2 variants (351, 356, 365, and 367) with alpha2 gave a K(d) approximately 0.4 microM for subunit interaction. Disruption of the interaction of the alpha2-DAN-beta2 complex is accompanied by a decrease in fluorescence intensity and can serve as a high-throughput screen for inhibitors of subunit interactions.


Bioconjugate Chemistry | 2008

Hyaluronan-Tethered Opioid Depots: Synthetic Strategies and Release Kinetics In Vitro and In Vivo

Diego A. Gianolio; Michael Philbrook; Luis Z. Avila; Lauren E. Young; Lars Plate; Michael Santos; Richard Bernasconi; Hanlan Liu; Sujin Ahn; Wei Sun; Peter Jarrett; Robert J. Miller

We proposed the use of opioid drug bound covalently to hyaluronan (HA) via ester linkages as a method to prolong drug delivery and to possibly increase the quality of perioperative pain management. The in vitro release profile of morphine conjugated to HA (1.3 million MW) was studied. The influence of parameters such as conjugation site and steric protection of the labile ester bonds was investigated in phosphate buffered saline (PBS) medium. HA--codeine and HA--naloxone conjugates were used as structural controls. Codeine and morphine conjugated via the allylic hydroxyl group had a release half-life of 14.0 days in PBS. Naloxone conjugated via the phenolic hydroxyl group showed a half-life of 0.3 days, and all drugs admixed in HA showed half-lives of 0.1 days. Methyl, ethyl, or n-propyl introduced in vicinal position to the ester bond prolonged release of naloxone with half-lives of 0.5, 4.0, and 4.0 days in PBS, respectively. Incorporation of a methyl group prolonged codeine release with a half-life of 55.0 days in PBS. Drugs were released chemically unaltered from the conjugates as confirmed by LC-MS/MS. Further, morphine was conjugated to divinylsulfone cross-linked HA (Hylan B) particles and the release profiles in rat plasma were studied in vitro and in vivo. Release in rat plasma was faster than in PBS with a half-life of 2.5 days, but the release was similar (ca. 12 days) when a cocktail of protease inhibitors was added to the plasma. Sustained release of morphine was observed in a rat surgical model over 30 h. Morphine was released chemically unaltered from the conjugate and morphine intermediates were not detected in significant amounts as confirmed by LC-MS/MS. These results suggest that the morphine release profile from the HA conjugates depends on the alkyl groups vicinal to the ester and the nature of the leaving group. In rat plasma, hydrolysis seems to be controlled by esterase activity.


Arthritis & Rheumatism | 2017

Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis

O. Alvarez-Garcia; Tokio Matsuzaki; Merissa Olmer; Lars Plate; Jeffery W. Kelly; Martin Lotz

Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA.

Collaboration


Dive into the Lars Plate's collaboration.

Top Co-Authors

Avatar

Jeffery W. Kelly

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

R. Luke Wiseman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Evan T. Powers

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan Paxman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianca Nguyen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Mortenson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Erik A Blackwood

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge