Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars T. Westlye is active.

Publication


Featured researches published by Lars T. Westlye.


Cerebral Cortex | 2010

Brain Maturation in Adolescence and Young Adulthood: Regional Age-Related Changes in Cortical Thickness and White Matter Volume and Microstructure

Christian K. Tamnes; Ylva Østby; Anders M. Fjell; Lars T. Westlye; Paulina Due-Tønnessen; Kristine B. Walhovd

The development of cortical gray matter, white matter (WM) volume, and WM microstructure in adolescence is beginning to be fairly well characterized by structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) studies. However, these aspects of brain development have rarely been investigated concurrently in the same sample and hence the relations between them are not understood. We delineated the age-related changes in cortical thickness, regional WM volume, and diffusion characteristics and investigated the relationships between these properties of brain development. One hundred and sixty-eight healthy participants aged 8-30 years underwent sMRI and DTI. The results showed regional age-related cortical thinning, WM volume increases, and changes in diffusion parameters. Cortical thickness was the most strongly age-related parameter. All classes of measures showed unique associations with age. The results indicate that cortical thinning in adolescence cannot be explained by WM maturation in underlying regions as measured by volumetry or DTI. Moderate associations between cortical thickness and both volume and diffusion parameters in underlying WM regions were also found, although the relationships were not strong. It is concluded that none of the measures are redundant and that the integration of the 3 will yield a more complete understanding of brain maturation.


Cerebral Cortex | 2010

Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry

Lars T. Westlye; Kristine B. Walhovd; Anders M. Dale; Atle Bjørnerud; Paulina Due-Tønnessen; Andreas Engvig; Håkon Grydeland; Christian K. Tamnes; Ylva Østby; Anders M. Fjell

Magnetic resonance imaging volumetry studies report inverted U-patterns with increasing white-matter (WM) volume into middle age suggesting protracted WM maturation compared with the cortical gray matter. Diffusion tensor imaging (DTI) is sensitive to degree and direction of water permeability in biological tissues, providing in vivo indices of WM microstructure. The aim of this cross-sectional study was to delineate age trajectories of WM volume and DTI indices in 430 healthy subjects ranging 8-85 years of age. We used automated regional brain volume segmentation and tract-based statistics of fractional anisotropy, mean, and radial diffusivity as markers of WM integrity. Nonparametric regressions were used to fit the age trajectories and to estimate the timing of maximum development and deterioration in aging. Although the volumetric data supported protracted growth into the sixth decade, DTI indices plateaued early in the fourth decade across all tested regions and then declined slowly into late adulthood followed by an accelerating decrease in senescence. Tractwise and voxel-based analyses yielded regional differences in development and aging but did not provide ample evidence in support of a simple last-in-first-out hypothesis of life-span changes.


Cerebral Cortex | 2009

High Consistency of Regional Cortical Thinning in Aging across Multiple Samples

Anders M. Fjell; Lars T. Westlye; Inge K. Amlien; Thomas Espeseth; Ivar Reinvang; Naftali Raz; Ingrid Agartz; David H. Salat; Doug Greve; Bruce Fischl; Anders M. Dale; Kristine B. Walhovd

Cross-sectional magnetic resonance imaging (MRI) studies of cortical thickness and volume have shown age effects on large areas, but there are substantial discrepancies across studies regarding the localization and magnitude of effects. These discrepancies hinder understanding of effects of aging on brain morphometry, and limit the potential usefulness of MR in research on healthy and pathological age-related brain changes. The present study was undertaken to overcome this problem by assessing the consistency of age effects on cortical thickness across 6 different samples with a total of 883 participants. A surface-based segmentation procedure (FreeSurfer) was used to calculate cortical thickness continuously across the brain surface. The results showed consistent age effects across samples in the superior, middle, and inferior frontal gyri, superior and middle temporal gyri, precuneus, inferior and superior parietal cortices, fusiform and lingual gyri, and the temporo-parietal junction. The strongest effects were seen in the superior and inferior frontal gyri, as well as superior parts of the temporal lobe. The inferior temporal lobe and anterior cingulate cortices were relatively less affected by age. The results are discussed in relation to leading theories of cognitive aging.


The Journal of Neuroscience | 2009

Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years

Ylva Østby; Christian K. Tamnes; Anders M. Fjell; Lars T. Westlye; Paulina Due-Tønnessen; Kristine B. Walhovd

Brain development during late childhood and adolescence is characterized by decreases in gray matter (GM) and increases in white matter (WM) and ventricular volume. The dynamic nature of development across different structures is, however, not well understood, and the present magnetic resonance imaging study took advantage of a whole-brain segmentation approach to describe the developmental trajectories of 16 neuroanatomical volumes in the same sample of children, adolescents, and young adults (n = 171; range, 8–30 years). The cerebral cortex, cerebral WM, caudate, putamen, pallidum, accumbens area, hippocampus, amygdala, thalamus, brainstem, cerebellar GM, cerebellar WM, lateral ventricles, inferior lateral ventricles, third ventricle, and fourth ventricle were studied. The cerebral cortex was further analyzed in terms of lobar thickness and surface area. The results revealed substantial heterogeneity in developmental trajectories. GM decreased nonlinearly in the cerebral cortex and linearly in the caudate, putamen, pallidum, accumbens, and cerebellar GM, whereas the amygdala and hippocampus showed slight, nonlinear increases in GM volume. WM increased nonlinearly in both the cerebrum and cerebellum, with an earlier maturation in cerebellar WM. In addition to similarities in developmental trajectories within subcortical regions, our results also point to differences between structures within the same regions: among the basal ganglia, the caudate showed a weaker relationship with age than the putamen and pallidum, and in the cerebellum, differences were found between GM and WM development. These results emphasize the importance of studying a wide range of structural variables in the same sample, for a broader understanding of brain developmental principles.


Neurobiology of Aging | 2011

Consistent neuroanatomical age-related volume differences across multiple samples.

Kristine B. Walhovd; Lars T. Westlye; Inge K. Amlien; Thomas Espeseth; Ivar Reinvang; Naftali Raz; Ingrid Agartz; David H. Salat; Doug Greve; Bruce Fischl; Anders M. Dale; Anders M. Fjell

Magnetic resonance imaging (MRI) is the principal method for studying structural age-related brain changes in vivo. However, previous research has yielded inconsistent results, precluding understanding of structural changes of the aging brain. This inconsistency is due to methodological differences and/or different aging patterns across samples. To overcome these problems, we tested age effects on 17 different neuroanatomical structures and total brain volume across five samples, of which one was split to further investigate consistency (883 participants). Widespread age-related volume differences were seen consistently across samples. In four of the five samples, all structures, except the brainstem, showed age-related volume differences. The strongest and most consistent effects were found for cerebral cortex, pallidum, putamen and accumbens volume. Total brain volume, cerebral white matter, caudate, hippocampus and the ventricles consistently showed non-linear age functions. Healthy aging appears associated with more widespread and consistent age-related neuroanatomical volume differences than previously believed.


NeuroImage | 2010

Effects of memory training on cortical thickness in the elderly

Andreas Engvig; Anders M. Fjell; Lars T. Westlye; Torgeir Moberget; Øyvind Sundseth; Vivi Agnete Larsen; Kristine B. Walhovd

The brains ability to alter its functional and structural architecture in response to experience and learning has been extensively studied. Mental stimulation might serve as a reserve mechanism in brain aging, but macrostructural brain changes in response to cognitive training have been demonstrated in young participants only. We examined the short-term effects of an intensive memory training program on cognition and brain structure in middle-aged and elderly healthy volunteers. The memory trainers completed an 8-week training regimen aimed at improving verbal source memory utilizing the Method of Loci (MoL), while control participants did not receive any intervention. Both the memory trainers and the controls underwent magnetic resonance imaging (MRI) scans and memory testing pre and post 8 weeks of training or no training, respectively. Cortical thickness was automatically measured across the cortical mantle, and data processing and statistical analyses were optimized for reliable detection of longitudinal changes. The results showed that memory training improved source memory performance. Memory trainers also showed regional increases in cortical thickness compared with controls. Furthermore, thickness change in the right fusiform and lateral orbitofrontal cortex correlated positively with improvement in source memory performance, suggesting a possible functional significance of the structural changes. These findings demonstrate that systematic mental exercise may induce short-term structural changes in the aging human brain, indicating structural brain plasticity in elderly. The present study included short-term assessments, and follow-up studies are needed in order to assess whether such training indeed alters the long-term structural trajectories.


Molecular Psychiatry | 2016

Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

T G M van Erp; Derrek P. Hibar; Jerod Rasmussen; David C. Glahn; Godfrey D. Pearlson; Ole A. Andreassen; Ingrid Agartz; Lars T. Westlye; Unn K. Haukvik; Anders M. Dale; Ingrid Melle; Cecilie B. Hartberg; Oliver Gruber; Bernd Kraemer; David Zilles; Gary Donohoe; Sinead Kelly; Colm McDonald; Derek W. Morris; Dara M. Cannon; Aiden Corvin; Marise W J Machielsen; Laura Koenders; L. de Haan; Dick J. Veltman; Theodore D. Satterthwaite; Daniel H. Wolf; R.C. Gur; Raquel E. Gur; Steve Potkin

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen’s d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Human Brain Mapping | 2012

Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study.

Andreas Engvig; Anders M. Fjell; Lars T. Westlye; Torgeir Moberget; Øyvind Sundseth; Vivi Agnete Larsen; Kristine B. Walhovd

A growing body of research indicates benefits of cognitive training in older adults, but the neuronal mechanisms underlying the effect of cognitive intervention remains largely unexplored. Neuroimaging methods are sensitive to subtle changes in brain structure and show potential for enhancing our understanding of both aging‐ and training‐related neuronal plasticity. Specifically, studies using diffusion tensor imaging (DTI) suggest substantial changes in white matter (WM) in aging, but it is not known whether cognitive training might modulate these structural alterations. We used tract‐based spatial statistics (TBSS) optimized for longitudinal analysis to delineate the effects of 8 weeks intensive memory training on WM microstructure. 41 participants (mean age 61 years) matched for age, sex and education were randomly assigned to an intervention or control group. All participants underwent MRI‐scanning and neuropsychological assessments at the beginning and end of the study. Longitudinal analysis across groups revealed significant increase in frontal mean diffusivity (MD), indicating that DTI is sensitive to WM structural alterations over a 10‐week interval. Further, group analysis demonstrated positive effects of training on the short‐term changes. Participants in the training group showed a relative increase in fractional anisotropy (FA) compared with controls. Further, a significant relationship between memory improvement and change in FA was found, suggesting a possible functional significance of the reported changes. The training effect on FA seemed to be driven by a relative decrease in radial diffusivity, which might indicate a role for myelin‐related processes in WM plasticity. Hum Brain Mapp 33:2390–2406, 2012.


Nature Genetics | 2015

Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease.

Stacy Steinberg; Hreinn Stefansson; Thorlakur Jonsson; Hrefna Johannsdottir; Andres Ingason; Hannes Helgason; Patrick Sulem; Olafur T. Magnusson; Sigurjon A. Gudjonsson; Unnur Unnsteinsdottir; Augustine Kong; Seppo Helisalmi; Hilkka Soininen; James J. Lah; DemGene; Dag Aarsland; Tormod Fladby; Ingun Ulstein; Srdjan Djurovic; Sigrid Botne Sando; Linda R. White; Gun-Peggy Knudsen; Lars T. Westlye; Geir Selbæk; Ina Giegling; Harald Hampel; Mikko Hiltunen; Allan I. Levey; Ole A. Andreassen; Dan Rujescu

We conducted a search for rare, functional variants altering susceptibility to Alzheimers disease that exploited knowledge of common variants associated with the same disease. We found that loss-of-function variants in ABCA7 confer risk of Alzheimers disease in Icelanders (odds ratio (OR) = 2.12, P = 2.2 × 10−13) and discovered that the association replicated in study groups from Europe and the United States (combined OR = 2.03, P = 6.8 × 10−15).


NeuroImage | 2008

The relationship between diffusion tensor imaging and volumetry as measures of white matter properties.

Anders M. Fjell; Lars T. Westlye; Douglas N. Greve; Bruce Fischl; Thomas Benner; Andre van der Kouwe; David H. Salat; Atle Bjørnerud; Paulina Due-Tønnessen; Kristine B. Walhovd

There is still limited knowledge about the relationship between different structural brain parameters, despite huge progress in analysis of neuroimaging data. The aim of the present study was to test the relationship between fractional anisotropy (FA) from diffusion tensor imaging (DTI) and regional white matter (WM) volume. As WM volume has been shown to develop until middle age, the focus was on changes in WM properties in the age range of 40 to 60 years. 100 participants were scanned with magnetic resonance imaging (MRI). Each hemisphere was parcellated into 35 WM regions, and volume, FA, axial, and radial diffusion in each region were calculated. The relationships between age and the regional measures of FA and WM volume were tested, and then FA and WM volume were correlated, corrected for intracranial volume, age, and sex. WM volume was weakly related to age, while FA correlated negatively with age in 26 of 70 regions, caused by a mix of reduced axial and increased radial diffusion with age. 23 relationships between FA and WM volume were found, with seven being positive and sixteen negative. The positive correlations were mainly caused by increased radial diffusion. It is concluded that FA is more sensitive than volume to changes in WM integrity during middle age, and that FA-age correlations probably are related to reduced amount of myelin with increasing age. Further, FA and WM volume are moderately to weakly related and to a large extent sensitive to different characteristics of WM integrity.

Collaboration


Dive into the Lars T. Westlye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dag Alnæs

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge