Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torgeir Moberget is active.

Publication


Featured researches published by Torgeir Moberget.


NeuroImage | 2010

Effects of memory training on cortical thickness in the elderly

Andreas Engvig; Anders M. Fjell; Lars T. Westlye; Torgeir Moberget; Øyvind Sundseth; Vivi Agnete Larsen; Kristine B. Walhovd

The brains ability to alter its functional and structural architecture in response to experience and learning has been extensively studied. Mental stimulation might serve as a reserve mechanism in brain aging, but macrostructural brain changes in response to cognitive training have been demonstrated in young participants only. We examined the short-term effects of an intensive memory training program on cognition and brain structure in middle-aged and elderly healthy volunteers. The memory trainers completed an 8-week training regimen aimed at improving verbal source memory utilizing the Method of Loci (MoL), while control participants did not receive any intervention. Both the memory trainers and the controls underwent magnetic resonance imaging (MRI) scans and memory testing pre and post 8 weeks of training or no training, respectively. Cortical thickness was automatically measured across the cortical mantle, and data processing and statistical analyses were optimized for reliable detection of longitudinal changes. The results showed that memory training improved source memory performance. Memory trainers also showed regional increases in cortical thickness compared with controls. Furthermore, thickness change in the right fusiform and lateral orbitofrontal cortex correlated positively with improvement in source memory performance, suggesting a possible functional significance of the structural changes. These findings demonstrate that systematic mental exercise may induce short-term structural changes in the aging human brain, indicating structural brain plasticity in elderly. The present study included short-term assessments, and follow-up studies are needed in order to assess whether such training indeed alters the long-term structural trajectories.


Human Brain Mapping | 2012

Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study.

Andreas Engvig; Anders M. Fjell; Lars T. Westlye; Torgeir Moberget; Øyvind Sundseth; Vivi Agnete Larsen; Kristine B. Walhovd

A growing body of research indicates benefits of cognitive training in older adults, but the neuronal mechanisms underlying the effect of cognitive intervention remains largely unexplored. Neuroimaging methods are sensitive to subtle changes in brain structure and show potential for enhancing our understanding of both aging‐ and training‐related neuronal plasticity. Specifically, studies using diffusion tensor imaging (DTI) suggest substantial changes in white matter (WM) in aging, but it is not known whether cognitive training might modulate these structural alterations. We used tract‐based spatial statistics (TBSS) optimized for longitudinal analysis to delineate the effects of 8 weeks intensive memory training on WM microstructure. 41 participants (mean age 61 years) matched for age, sex and education were randomly assigned to an intervention or control group. All participants underwent MRI‐scanning and neuropsychological assessments at the beginning and end of the study. Longitudinal analysis across groups revealed significant increase in frontal mean diffusivity (MD), indicating that DTI is sensitive to WM structural alterations over a 10‐week interval. Further, group analysis demonstrated positive effects of training on the short‐term changes. Participants in the training group showed a relative increase in fractional anisotropy (FA) compared with controls. Further, a significant relationship between memory improvement and change in FA was found, suggesting a possible functional significance of the reported changes. The training effect on FA seemed to be driven by a relative decrease in radial diffusivity, which might indicate a role for myelin‐related processes in WM plasticity. Hum Brain Mapp 33:2390–2406, 2012.


Neuropsychologia | 2008

Detecting violations of sensory expectancies following cerebellar degeneration: A mismatch negativity study

Torgeir Moberget; Christina M. Karns; Leon Y. Deouell; Magnus Lindgren; Robert T. Knight; Richard B. Ivry

Two hypotheses concerning cerebellar function and predictive behavior are the sensory prediction hypothesis and the timing hypothesis. The former postulates that the cerebellum is critical in generating expectancies regarding forthcoming sensory information. The latter postulates that this structure is critical in generating expectancies that are precisely timed; for example, the expected duration of an event or the time between events. As such, the timing hypothesis constitutes a more specific form of prediction. The present experiment contrasted these two hypotheses by examining the mismatch negativity (MMN) response in patients with cerebellar cortical atrophy and matched controls. While watching a silent movie, a stream of task-irrelevant sounds was presented. A standard sound was presented 60% of the time, whereas the remaining sounds deviated from the standard on one of four dimensions: duration, intensity, pitch, or location. The timing between stimuli was either periodic or aperiodic. Based on the sensory prediction hypothesis, the MMN for the patients should be abnormal across all four dimensions. In contrast, the timing hypothesis would predict a selective impairment of the duration MMN. Moreover, the timing hypothesis would also predict that the enhancement of the MMN observed in controls when the stimuli are presented periodically should be attenuated in the patients. Compared to controls, the patients exhibited a delayed latency in the MMN to duration deviants and a similar trend for the intensity deviants, while pitch and location MMNs did not differ between groups. Periodicity had limited and somewhat inconsistent effects. The present results are at odds with a general role for the cerebellum in sensory prediction and provide partial support for the timing hypothesis.


The Journal of Neuroscience | 2014

Generalized Role for the Cerebellum in Encoding Internal Models: Evidence from Semantic Processing

Torgeir Moberget; Eva Hilland Gullesen; Stein Andersson; Richard B. Ivry; Tor Endestad

The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellums role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation–reflecting the operation of acquired internal models–should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.


Biological Psychiatry | 2012

Evidence for Impaired Neocortical Synaptic Plasticity in Bipolar II Disorder

Torbjørn Elvsåshagen; Torgeir Moberget; Erlend Bøen; Birgitte Boye; Nils O.A. Englin; Per Ø. Pedersen; Ole A. Andreassen; Espen Dietrichs; Ulrik Fredrik Malt; Stein Andersson

BACKGROUND Synaptic plasticity might play an important role in the pathophysiology and treatment of bipolar disorders. There is, however, a paucity of human evidence supporting this hypothesis, mainly due to a lack of methods for noninvasive assessment of synaptic plasticity. It has recently been demonstrated that plasticity of the visual evoked potential (VEP) induced by repeated visual stimulation might reflect synaptic plasticity. In this study, we examined VEP plasticity in healthy control subjects and patients with bipolar II disorder (BD-II). METHODS Forty healthy control subjects and 26 individuals with a DSM-IV diagnosis of BD-II matched for age and gender participated. The VEPs were evoked by checkerboard reversal stimulation before and after a modulation block of prolonged (10 min) visual stimulation. RESULTS The modulation block resulted in significant VEP plasticity in healthy control subjects. The VEP plasticity was significantly impaired in patients with BD-II. Explorative analyses indicated a trend toward a less severe impairment in medicated than in unmedicated patients. CONCLUSIONS Visual evoked potential plasticity might represent a reliable and robust assay for studies of synaptic plasticity in vivo in humans. In addition, our findings support the hypothesis of impaired synaptic plasticity in BD-II. Longitudinal studies are needed to fully clarify the effects of medication and mood state on VEP plasticity.


Annals of the New York Academy of Sciences | 2016

Cerebellar contributions to motor control and language comprehension: searching for common computational principles

Torgeir Moberget; Richard B. Ivry

The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context‐specific dynamics of an agents interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.


Scientific Reports | 2017

Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum

Aldo Córdova-Palomera; Tobias Kaufmann; Karin Persson; Dag Alnæs; Nhat Trung Doan; Torgeir Moberget; Martina J. Lund; Maria Lage Barca; Andreas Engvig; Anne Brækhus; Knut Engedal; Ole A. Andreassen; Geir Selbæk; Lars T. Westlye

As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.


Neuropsychologia | 2015

Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood

Torgeir Moberget; Stein Andersson; Tryggve Lundar; Bernt Johan Due-Tønnessen; Aasta Heldal; Tor Endestad; Lars T. Westlye

The cerebellum is connected to extensive regions of the cerebrum, and cognitive deficits following cerebellar lesions may thus be related to disrupted cerebello-cerebral connectivity. Moreover, early cerebellar lesions could affect distal brain development, effectively inducing long-term changes in brain structure and cognitive function. Here, we characterize supratentorial brain structure and cognitive function in 20 adult patients treated for cerebellar tumours in childhood (mean age at surgery: 7.1 years) and 26 matched controls. Relative to controls, patients showed reduced cognitive function and increased grey matter density in bilateral cingulum, left orbitofrontal cortex and the left hippocampus. Within the patient group, increased grey matter density in these regions was associated with decreased performance on tests of processing speed and executive function. Further, diffusion tensor imaging revealed widespread alterations in white matter microstructure in patients. While current ventricle volume (an index of previous hydrocephalus severity it patients) was associated with grey matter density and white matter microstructure in patients, this could only partially account for the observed group differences in brain structure and cognitive function. In conclusion, our results show distal effects of cerebellar lesions on cerebral integrity and wiring, likely caused by a combination of neurodegenerative processes and perturbed neurodevelopment.


Molecular Psychiatry | 2018

Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls

Torgeir Moberget; Nhat Trung Doan; Dag Alnæs; Tobias Kaufmann; Aldo Córdova-Palomera; Trine Vik Lagerberg; Jörn Diedrichsen; Emanuel Schwarz; Mathias Zink; Sarah Eisenacher; Peter Kirsch; Erik G. Jönsson; Helena Fatouros-Bergman; Lena Flyckt; Giulio Pergola; T Quarto; Alessandro Bertolino; Andreas Meyer-Lindenberg; Ingrid Agartz; Ole A. Andreassen; Lars T. Westlye

Although cerebellar involvement across a wide range of cognitive and neuropsychiatric phenotypes is increasingly being recognized, previous large-scale studies in schizophrenia (SZ) have primarily focused on supratentorial structures. Hence, the across-sample reproducibility, regional distribution, associations with cerebrocortical morphology and effect sizes of cerebellar relative to cerebral morphological differences in SZ are unknown. We addressed these questions in 983 patients with SZ spectrum disorders and 1349 healthy controls (HCs) from 14 international samples, using state-of-the-art image analysis pipelines optimized for both the cerebellum and the cerebrum. Results showed that total cerebellar grey matter volume was robustly reduced in SZ relative to HCs (Cohens’s d=−0.35), with the strongest effects in cerebellar regions showing functional connectivity with frontoparietal cortices (d=−0.40). Effect sizes for cerebellar volumes were similar to the most consistently reported cerebral structural changes in SZ (e.g., hippocampus volume and frontotemporal cortical thickness), and were highly consistent across samples. Within groups, we further observed positive correlations between cerebellar volume and cerebral cortical thickness in frontotemporal regions (i.e., overlapping with areas that also showed reductions in SZ). This cerebellocerebral structural covariance was strongest in SZ, suggesting common underlying disease processes jointly affecting the cerebellum and the cerebrum. Finally, cerebellar volume reduction in SZ was highly consistent across the included age span (16–66 years) and present already in the youngest patients, a finding that is more consistent with neurodevelopmental than neurodegenerative etiology. Taken together, these novel findings establish the cerebellum as a key node in the distributed brain networks underlying SZ.


Behavioural Neurology | 2015

Neurophysiological Indicators of Residual Cognitive Capacity in the Minimally Conscious State

Solveig Lægreid Hauger; Caroline Schnakers; Stein Andersson; Frank Becker; Torgeir Moberget; Joseph T. Giacino; Anne-Kristine Schanke; Marianne Løvstad

Background. The diagnostic usefulness of electrophysiological methods in assessing disorders of consciousness (DoC) remains to be established on an individual patient level, and there is need to determine what constitutes robust experimental paradigm to elicit electrophysiological indices of covert cognitive capacity. Objectives. Two tasks encompassing active and passive conditions were explored in an event-related potentials (ERP) study. The task robustness was studied in healthy controls, and their utility to detect covert signs of command-following on an individual patient level was investigated in patients in a minimally conscious state (MCS). Methods. Twenty healthy controls and 20 MCS patients participated. The active tasks included (1) listening for a change of pitch in the subjects own name (SON) and (2) counting SON, both contrasted to passive conditions. Midline ERPs are reported. Results. A larger P3 response was detected in the counting task compared to active listening to pitch change in the healthy controls. On an individual level, the counting task revealed a higher rate of responders among both healthy subjects and MCS patients. Conclusion. ERP paradigms involving actively counting SON represent a robust paradigm in probing for volitional cognition in minimally conscious patients and add important diagnostic information in some patients.

Collaboration


Dive into the Torgeir Moberget's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dag Alnæs

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge