Lars Weber
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars Weber.
Medical Physics | 2004
P. Carrasco; N. Jornet; M. A. Duch; Lars Weber; M. Ginjaume; T. Eudaldo; D. Jurado; A. Ruiz; M. Ribas
An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by means of the PENELOPE code were performed. Four different field sizes (10 x 10, 5 x 5, 2 x 2, and 1 x 1 cm2) and two lung equivalent materials (CIRS, p(w)e=0.195 and St. Bartholomew Hospital, London, p(w)e=0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2 x 2 cm2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2 x 2 cm2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0.4%+/-1.2%). The penumbra broadening effect in low density media was not predicted by any of the correction-based algorithms, and the only one that matched the experimental values and the Monte Carlo simulations within the estimated uncertainties was the Collapsed Cone Algorithm.
Physics in Medicine and Biology | 1995
Tommy Knöös; Anders Ahnesjö; Per Nilsson; Lars Weber
A common limitation in treatment planning systems for photon dose calculation is to ignore the impact on electron transport and photon scatter from patient heterogeneities. The heterogeneity correlation is often based on scaling operations along beam rays as for the method according to Batho or the more novel approach of 1D convolutions along beam paths applied in pencil-beam-based systems. The effects of the limitation have been studied in a mediastinum geometry for a wide range of beam qualities by comparing the results from a pencil-beam-based treatment planning system with the results from Monte Carlo calculations. As expected, the deviations within unit-density volumes are small while deviations in low-density volumes increase with increasing beam energy from approximately 3% for 4 MV to 14% for 18 MV x-rays as a result of increased electron disequilibrium.
Physics in Medicine and Biology | 1994
Tommy Knöös; Crister Ceberg; Lars Weber; Per Nilsson
A new three-dimensional treatment planning system (TPS) based on convolution/superposition algorithms (TMS-Radix from HELAX AB, Uppsala, Sweden) was recently installed at the University Hospital in Lund. The purpose of the present study was to design a quality assurance and acceptance testing programme to meet the specific characteristics of this convolution model. The model is based on parametrization of a non-measurable quantity-the polyenergetic pencil beam. However, the verification of the treatment planning model is still dependent on numerous comparisons of measured depth-doses and dose profiles. The test programme was divided in two basic parts: (i) model implementation and beam data consistency and (ii) model performance and limitations in special situations. The first part was scheduled for all photon beam qualities available before they could be used for clinical treatment planning. The second part was performed for selected energies only. The results indicate clearly that the model is well suited for clinical three-dimensional dose planning and that the TPS handles data as expected. For example, calculated depth-doses for open and wedge beams at depths larger than the depth of dose maximum and profiles for open beams shows a very good agreement with measurements. However, depth-dose deviations at shallow depths, especially for high energies, were found. Monitor units calculated by the system were accurate for most fields except for very large fields, where deviations of several per cent were found.
Medical Physics | 1995
Anders Ahnesjö; Lars Weber; Per Nilsson
The development of treatment planning methods in radiation therapy requires dose calculation methods that are both accurate and general enough to provide a dose per unit monitor setting for a broad variety of fields and beam modifiers. The purpose of this work was to develop models for calculation of scatter and transmission for photon beam attenuators such as compensating filters, wedges, and block trays. The attenuation of the beam is calculated using a spectrum of the beam, and a correction factor based on attenuation measurements. Small angle coherent scatter and electron binding effects on scattering cross sections are considered by use of a correction factor. Quality changes in beam penetrability and energy fluence to dose conversion are modeled by use of the calculated primary beam spectrum after passage through the attenuator. The beam spectra are derived by the depth dose effective method, i.e., by minimizing the difference between measured and calculated depth dose distributions, where the calculated distributions are derived by superposing data from a database for monoenergetic photons. The attenuator scatter is integrated over the area viewed from the calculation point of view using first scatter theory. Calculations are simplified by replacing the energy and angular-dependent cross-section formulas with the forward scatter constant r2(0) and a set of parametrized correction functions. The set of corrections include functions for the Compton energy loss, scatter attenuation, and secondary bremsstrahlung production. The effect of charged particle contamination is bypassed by avoiding use of dmax for absolute dose calibrations. The results of the model are compared with scatter measurements in air for copper and lead filters and with dose to a water phantom for lead filters for 4 and 18 MV. For attenuated beams, downstream of the buildup region, the calculated results agree with measurements on the 1.5% level. The accuracy was slightly less in situations where the scatter component is very large, as for very large fields with very short filter to detector distances. The implementation of the model into treatment planning systems is discussed.
Medical Physics | 2007
P. Carrasco; N. Jornet; M. A. Duch; Vanessa Panettieri; Lars Weber; T. Eudaldo; M. Ginjaume; M. Ribas
To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within the estimated uncertainties. The TLD and MOSFET detectors were suitable for dose measurement inside bone-equivalent materials, while parallel ionization chambers, applying the same calibration and correction factors as in water, systematically underestimated dose by 3%-5%.
Medical Physics | 2005
Anders Ahnesjö; Lars Weber; Anders Murman; Mikael Saxner; Ingvar Thorslund; Erik Traneus
Dose calculations for treatment planning of photon beam radiotherapy require a model of the beam to drive the dose calculation models. The beam shaping process involves scattering and filtering that yield radiation components which vary with collimator settings. The necessity to model these components has motivated the development of multisource beam models. We describe and evaluate clinical photon beam modeling based on multisource models, including lateral beam quality variations. The evaluation is based on user data for a pencil kernel algorithm and a point kernel algorithm (collapsed cone) used in the clinical treatment planning systems Helax-TMS and Nucletron-Oncentra. The pencil kernel implementations treat the beam spectrum as lateral invariant while the collapsed cone involves off axis softening of the spectrum. Both algorithms include modeling of head scatter components. The parameters of the beam model are derived from measured beam data in a semiautomatic process called RDH (radiation data handling) that, in sequential steps, minimizes the deviations in calculated dose versus the measured data. The RDH procedure is reviewed and the results of processing data from a large number of treatment units are analyzed for the two dose calculation algorithms. The results for both algorithms are similar, with slightly better results for the collapsed cone implementations. For open beams, 87% of the machines have maximum errors less than 2.5%. For wedged beams the errors were found to increase with increasing wedge angle. Internal, motorized wedges did yield slightly larger errors than external wedges. These results reflect the increased complexity, both experimentally and computationally, when wedges are used compared to open beams.
Physics in Medicine and Biology | 1997
Lars Weber; Per Nilsson; Anders Ahnesjö
The suitability of high-Z materials as build-up caps for head-scatter measurements has been investigated. Build-up caps are often used to enable characterization of fields too small for a mini-phantom. We have studied lead and brass build-up caps with sufficiently large wall thicknesses, as compared to the range of contaminating electrons originating in the accelerator head, and compared them with build-up caps made of ionization chamber equivalent materials, i.e. graphite. The results were also compared with measurements taken using square and cylindrical polystyrene mini-phantoms. Field sizes ranging from 3 cm x 3 cm up to 40 cm x 40 cm were studied for nominal photon energies of 4, 6, 10 and 18 MV. The results show that the use of lead and brass build-up caps produces normalized head-scatter data slightly different from graphite build-up caps for large fields at high photon energies. At lower energies, however, no significant differences were found. The intercomparison between the two different plastic mini-phantoms and graphite caps showed no differences.
Medical Physics | 1996
Lars Weber; Anders Ahnesjö; Per Nilsson; Mikael Saxner; Tommy Knöös
The use of dynamic movements on linear accelerators during irradiation has found a revised interest lately due to the integration of computers to control the accelerator. In this paper, dynamic wedge fields that are produced by moving one of the collimator blocks during irradiation are studied. Since these wedge fields differ from those of mechanical wedges, certain requirements are to be met on the treatment planning system. A pencil-beam-based treatment planning system that uses the resultant energy fluence distribution from the dynamic collimator movement has been extensively reviewed. In calculations, the system treats the dynamic collimated field as a single, modulated field that yields calculation times close to those for open beams. Details are given on the theoretical model used for the calculation of dynamically generated dose distributions. Measurements of depth doses, profiles, and output factors in dynamic wedge fields indicate that calculations accurately predict the outcome from dynamic wedges without any additional measurements other than those used for characterization of static open beams.
International Journal of Hyperthermia | 1995
C-E Lindholm; Elisabeth Kjellén; Per Nilsson; Lars Weber; Sally A. Hill
Prognostic factors for complete tumour response and acute skin damage to combined hyperthermia and radiotherapy were analysed in material of patients with breast cancer, recurrent in previously irradiated areas. Radiotherapy was given daily to a total absorbed dose of 30.0 Gy in 2 weeks or 34.5 Gy in 3 weeks. The first radiotherapy schedule was combined with heat twice weekly, a total of four heat treatments (schedule A). The second radiotherapy schedule was combined with heat either once or twice a week resulting in a total of three (schedule B) or six (schedule C) heat treatments. Heat was induced with microwaves (2450, 915 or 434 MHz) via external applicators and always given after the radiotherapy fraction. The complete response (CR) rate in evaluable patients was 71% (49/69). There was no significant difference in CR rate between the three different hyperthermia schedules. The CR rates were 74% (14/19), 65% (15/23) and 74% (20/27) for schedules A, B and C respectively. The only factor predicting CR, evaluated both uni- and multivariately, was the CRE-value for the present radiotherapy dose (p = 0.02). If only tumours treated with 915 MHz were taken into account, however, then the highest minimum temperature at a given heat session predicted complete response (p = 0.03). This was true also in a multivariate analysis of this subgroup of tumours. A Kaplan-Meier analysis (log rank test) showed no significant difference in duration of CR between the different treatment schedules. Coxs proportional hazards method revealed three significant factors: tumour size (negatively correlated, p = 0.007), the time interval between the diagnosis of the primary tumour and the present treatment (p = 0.02) and the average temperature (0.03). Maximum acute skin reactions in the treatment field were scored according to an ordinal scale of 0-8, modified after WHO 1979. Twenty-six treatment areas (32%) expressed more severe skin damage (score > or = 5) in terms of desquamation with blisters (14%) and necrosis or ulceration (19%). Factors correlated with skin damage were the size of the lesion area (p = 0.011), the highest average maximum temperature during a given heat session (p = 0.03) and the fractionation schedule of hyperthermia (p = 0.05). The extent of previous radiotherapy absorbed dose, previous surgery in the treated area or previous chemotherapy had no significant influence on the acute skin reactions.
World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany | 2009
Sonny La; Crister Ceberg; Andrej Tomaszewicz; Lars Weber
Purpose: To develop and evaluate a method to convert the greyscale intensity values from CBCT images acquired on an Elekta XVI into HU for treatment planning dose calculations.