Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommy Knöös is active.

Publication


Featured researches published by Tommy Knöös.


Physics in Medicine and Biology | 2006

Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations.

Tommy Knöös; Elinore Wieslander; Luca Cozzi; Carsten Brink; Antonella Fogliata; Dirk Albers; Håkan Nyström; Søren Lassen

A study of the performance of five commercial radiotherapy treatment planning systems (TPSs) for common treatment sites regarding their ability to model heterogeneities and scattered photons has been performed. The comparison was based on CT information for prostate, head and neck, breast and lung cancer cases. The TPSs were installed locally at different institutions and commissioned for clinical use based on local procedures. For the evaluation, beam qualities as identical as possible were used: low energy (6 MV) and high energy (15 or 18 MV) x-rays. All relevant anatomical structures were outlined and simple treatment plans were set up. Images, structures and plans were exported, anonymized and distributed to the participating institutions using the DICOM protocol. The plans were then re-calculated locally and exported back for evaluation. The TPSs cover dose calculation techniques from correction-based equivalent path length algorithms to model-based algorithms. These were divided into two groups based on how changes in electron transport are accounted for ((a) not considered and (b) considered). Increasing the complexity from the relatively homogeneous pelvic region to the very inhomogeneous lung region resulted in less accurate dose distributions. Improvements in the calculated dose have been shown when models consider volume scatter and changes in electron transport, especially when the extension of the irradiated volume was limited and when low densities were present in or adjacent to the fields. A Monte Carlo calculated algorithm input data set and a benchmark set for a virtual linear accelerator have been produced which have facilitated the analysis and interpretation of the results. The more sophisticated models in the type b group exhibit changes in both absorbed dose and its distribution which are congruent with the simulations performed by Monte Carlo-based virtual accelerator.


Physics in Medicine and Biology | 2007

On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations

Antonella Fogliata; Eugenio Vanetti; Dirk Albers; Carsten Brink; Alessandro Clivio; Tommy Knöös; Giorgia Nicolini; Luca Cozzi

A comparative study was performed to reveal differences and relative figures of merit of seven different calculation algorithms for photon beams when applied to inhomogeneous media. The following algorithms were investigated: Varian Eclipse: the anisotropic analytical algorithm, and the pencil beam with modified Batho correction; Nucletron Helax-TMS: the collapsed cone and the pencil beam with equivalent path length correction; CMS XiO: the multigrid superposition and the fast Fourier transform convolution; Philips Pinnacle: the collapsed cone. Monte Carlo simulations (MC) performed with the EGSnrc codes BEAMnrc and DOSxyznrc from NRCC in Ottawa were used as a benchmark. The study was carried out in simple geometrical water phantoms (rho = 1.00 g cm(-3)) with inserts of different densities simulating light lung tissue (rho = 0.035 g cm(-3)), normal lung (rho = 0.20 g cm(-3)) and cortical bone tissue (rho = 1.80 g cm(-3)). Experiments were performed for low- and high-energy photon beams (6 and 15 MV) and for square (13 x 13 cm2) and elongated rectangular (2.8 x 13 cm2) fields. Analysis was carried out on the basis of depth dose curves and transverse profiles at several depths. Assuming the MC data as reference, gamma index analysis was carried out distinguishing between regions inside the non-water inserts or inside the uniform water. For this study, a distance to agreement was set to 3 mm while the dose difference varied from 2% to 10%. In general all algorithms based on pencil-beam convolutions showed a systematic deficiency in managing the presence of heterogeneous media. In contrast, complicated patterns were observed for the advanced algorithms with significant discrepancies observed between algorithms in the lighter materials (rho = 0.035 g cm(-3)), enhanced for the most energetic beam. For denser, and more clinical, densities a better agreement among the sophisticated algorithms with respect to MC was observed.


Medical Physics | 2011

Current status and future perspective of flattening filter free photon beams

Dietmar Georg; Tommy Knöös; Brendan McClean

PURPOSE Flattening filters (FFs) have been considered as an integral part of the treatment head of a medical accelerator for more than 50 years. The reasons for the longstanding use are, however, historical ones. Advanced treatment techniques, such as stereotactic radiotherapy or intensity modulated radiotherapy have stimulated the interest in operating linear accelerators in a flattening filter free (FFF) mode. The current manuscript reviews treatment head physics of FFF beams, describes their characteristics and the resulting potential advantages in their medical use, and closes with an outlook. METHODS A number of dosimetric benefits have been determined for FFF beams, which range from increased dose rate and dose per pulse to favorable output ratio in-air variation with field size, reduced energy variation across the beam, and reduced leakage and out-of-field dose, respectively. Finally, the softer photon spectrum of unflattened beams has implications on imaging strategies and radiation protection. RESULTS The dosimetric characteristics of FFF beams have an effect on treatment delivery, patient comfort, dose calculation accuracy, beam matching, absorbed dose determination, treatment planning, machine specific quality assurance, imaging, and radiation protection. When considering conventional C-arm linacs in a FFF mode, more studies are needed to specify and quantify the clinical advantages, especially with respect to treatment plan quality and quality assurance. CONCLUSIONS New treatment units are already on the market that operate without a FF or can be operated in a dedicated clinical FFF mode. Due to the convincing arguments of removing the FF, it is expected that more vendors will offer dedicated treatment units for advanced photon beam therapy in the near future. Several aspects related to standardization, dosimetry, treatment planning, and optimization need to be addressed in more detail in order to facilitate the clinical implementation of unflattened beams.


International Journal of Radiation Oncology Biology Physics | 1998

Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index

Tommy Knöös; Ingrid Kristensen; Per Nilsson

PURPOSE The use of conformal radiation therapy has grown substantially during the last years since three-dimensional (3D) treatment planning systems with beams-eye-view planning has become commercially available. We studied the degree of conformity reached in clinical routines for some common diagnoses treated at our department by calculating a radiation conformity index (RCI). METHODS AND MATERIALS The radiation conformity index, determined as the ratio between the target volume (PTV) and the irradiated volume, has been evaluated for 57 patients treated with 3D treatment plans. RESULTS AND CONCLUSION The RCI was found to vary from 0.3 to 0.6 (average 0.4), a surprisingly low figure. The higher RCI is typical for pelvic treatments (e.g., prostate) and stereotactic treatments. The lower RCI is found for extended tumors, such as mammary carcinomas where the adjacent nodes are included. The latter is also valid for most lung cancer patients studied. The RCI gives a consistent method for quantifying the degree of conformity based on isodose surfaces and volumes. Care during interpretation of RCI must always be taken, since small changes in the minimum dose can dramatically change the treated volume.


Physics in Medicine and Biology | 1995

Limitations of a pencil beam approach to photon dose calculations in lung tissue

Tommy Knöös; Anders Ahnesjö; Per Nilsson; Lars Weber

A common limitation in treatment planning systems for photon dose calculation is to ignore the impact on electron transport and photon scatter from patient heterogeneities. The heterogeneity correlation is often based on scaling operations along beam rays as for the method according to Batho or the more novel approach of 1D convolutions along beam paths applied in pencil-beam-based systems. The effects of the limitation have been studied in a mediastinum geometry for a wide range of beam qualities by comparing the results from a pencil-beam-based treatment planning system with the results from Monte Carlo calculations. As expected, the deviations within unit-density volumes are small while deviations in low-density volumes increase with increasing beam energy from approximately 3% for 4 MV to 14% for 18 MV x-rays as a result of increased electron disequilibrium.


Radiotherapy and Oncology | 2009

Dosimetric characteristics of 6 and 10 MV unflattened photon beams

Gabriele Kragl; Sacha af Wetterstedt; B. Knäusl; Mårten Lind; Patrick McCavana; Tommy Knöös; Brendan McClean; Dietmar Georg

PURPOSE To determine dosimetric properties of unflattened megavoltage photon beams. MATERIALS AND METHODS Dosimetric data including depth dose, profiles, output factors and phantom scatter factors from three different beam qualities provided by Elekta Precise linacs, operated with and without flattening filter were examined. Additional measurements of leaf transmission, leakage radiation and surface dose were performed. In flattening filter free (FFF) mode a 6-mm thick copper filter was placed into the beam to stabilize it. RESULTS Depths of dose maxima for flattened and unflattened beams did not deviate by more than 2mm and penumbral widths agreed within 1mm. In FFF mode the collimator exchange effect was found to be on average 0.3% for rectangular fields. Between maximum and minimum field size head scatter factors of unflattened beams showed on average 40% and 56% less variation for 6 and 10MV beams than conventional beams. Phantom scatter factors for FFF beams differed up to 4% from the published reference data. For field sizes smaller than 15cm, surface doses relative to the dose at d(max) increased for unflattened beams with maximum differences of 7% at 6MV and 25% at 10MV for a 5x5cm(2) field. For a 30x30cm(2) field, relative surface dose decreased by about 10% for FFF beams. Leaf transmission on the central axis was 0.3% and 0.4% lower for unflattened 6 and 10MV beams, respectively. Leakage radiation was reduced by 52% for 6MV and by 65% for 10MV unflattened beams. CONCLUSIONS The results of the study were independently confirmed at two radiotherapy centres. Phantom scatter reference data need to be reconsidered for medical accelerators operated without a flattening filter.


Zeitschrift Fur Medizinische Physik | 2011

Flattening filter free beams in SBRT and IMRT: Dosimetric assessment of peripheral doses

Gabriele Kragl; Franziska Baier; Steffen Lutz; David Albrich; Mårten Dalaryd; Bernhard Kroupa; Tilo Wiezorek; Tommy Knöös; Dietmar Georg

PURPOSE Recently, there has been a growing interest in operating medical linear accelerators without a flattening filter. Due to reduced scatter, leaf transmission and radiation head leakage a reduction of out-of-field dose is expected for flattening filter free beams. The aim of the present study was to determine the impact of unflattened beams on peripheral dose for advanced treatment techniques with a large number of MUs. MATERIAL AND METHODS An Elekta Precise linac was modified to provide 6 and 10 MV photon beams without a flattening filter. Basic beam data were collected and implemented into the TPS Oncentra Masterplan (Nucletron). Leakage radiation, which predominantly contributes to peripheral dose at larger distances from the field edge, was measured using a Farmer type ionisation chamber. SBRT (lung) and IMRT (prostate, head&neck) treatment plans were generated for 6 and 10 MV for both flattened and unflattened beams. All treatment plans were delivered to the relevant anatomic region of an anthropomorphic phantom which was extended by a solid water slab phantom. Dosimetric measurements were performed with TLD-700 rods, radiochromic films and a Farmer type ionisation chamber. The detectors were placed within the slab phantom and positioned along the isocentric longitudinal axis. RESULTS Using unflattened beams results in a reduction of treatment head leakage by 52% for 6 and 65% for 10 MV. Thus, peripheral doses were in general smaller for treatment plans calculated with unflattened beams. At about 20 cm distance from the field edge the dose was on average reduced by 23 and 31% for the 6 and 10 MV SBRT plans. For the IMRT plans (10 MV) the average reduction was 16% for the prostate and 18% for the head&neck case, respectively. For all examined cases, the relative deviation between peripheral doses of flattened and unflattened beams was found to increase with increasing distance from the field. CONCLUSIONS Removing the flattening filter lead to reduced peripheral doses for advanced treatment techniques. The relative difference between peripheral doses of flattened and unflattened beams was more pronounced when the nominal beam energy was increased. Patients may benefit by decreased exposure of normal tissue to scattered dose outside the field.


Physics in Medicine and Biology | 1994

The dosimetric verification of a pencil beam based treatment planning system.

Tommy Knöös; Crister Ceberg; Lars Weber; Per Nilsson

A new three-dimensional treatment planning system (TPS) based on convolution/superposition algorithms (TMS-Radix from HELAX AB, Uppsala, Sweden) was recently installed at the University Hospital in Lund. The purpose of the present study was to design a quality assurance and acceptance testing programme to meet the specific characteristics of this convolution model. The model is based on parametrization of a non-measurable quantity-the polyenergetic pencil beam. However, the verification of the treatment planning model is still dependent on numerous comparisons of measured depth-doses and dose profiles. The test programme was divided in two basic parts: (i) model implementation and beam data consistency and (ii) model performance and limitations in special situations. The first part was scheduled for all photon beam qualities available before they could be used for clinical treatment planning. The second part was performed for selected energies only. The results indicate clearly that the model is well suited for clinical three-dimensional dose planning and that the TPS handles data as expected. For example, calculated depth-doses for open and wedge beams at depths larger than the depth of dose maximum and profiles for open beams shows a very good agreement with measurements. However, depth-dose deviations at shallow depths, especially for high energies, were found. Monitor units calculated by the system were accurate for most fields except for very large fields, where deviations of several per cent were found.


Physics in Medicine and Biology | 1999

Verification of a pencil beam based treatment planning system: output factors for open photon beams shaped with MLC or blocks

Helena Hansson; Peter Björk; Tommy Knöös; Per Nilsson

The accuracy of monitor unit calculations from a pencil beam based, three-dimensional treatment planning system (3D TPS) has been evaluated for open irregularly shaped photon fields. The dose per monitor unit was measured in water and in air for x-ray beam qualities from 6 to 15 MV. The fields were shaped either with a multileaf collimator (MLC) or with customized alloy blocks. Calculations from the 3D TPS were compared with measurements. The agreement between calculated and measured dose per monitor unit depended on field size and the amount of blocking and was within 3% for the MLC-shaped fields. The deviation could be traced to limitations in head scatter modelling for the MLC. For fields shaped with alloy blocks, the dose per monitor unit was calculated to be within 1.6% of measured values for all fields studied. The measured and calculated relative phantom scatter for fields with the same equivalent field size were identical for MLC and alloy shaped fields. These results indicate that the accuracy in the TPS calculations for open irregular fields, shaped with MLC or blocks, is satisfactory for clinical situations.


Radiotherapy and Oncology | 1986

A method for conversion of hounsfield number to electron density and prediction of macroscopic pair production cross-sections

Tommy Knöös; Mats Nilsson; Lars Ahlgren

A method for the determination of electron density using a narrow beam attenuation geometry is described. The method does not require that the elemental composition of the phantom materials is known. The Hounsfield numbers for the phantom materials used were determined using five different CT scanners. A relationship between Hounsfield number and electron density can thus be established, which is of considerable value in radiation therapy treatment planning procedures. Measurements of the ratio coherent/incoherent scattering of low energy photons in a certain geometry has proven valuable for determination of atomic number, which in its turn can be used for estimation of macroscopic pair production coefficients for high energy photons. The combination of knowledge of electron density with methods for determination of processes, dependent on atomic number, can form a base for adequate composition of phantom materials for purposes of testing dose calculation algorithms for photons and electrons.

Collaboration


Dive into the Tommy Knöös's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietmar Georg

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge