Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lasse Jensen is active.

Publication


Featured researches published by Lasse Jensen.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model

Samantha Lin Chiou Lee; Pegah Rouhi; Lasse Jensen; Danfang Zhang; Hong Ji; Giselbert Hauptmann; Philip W. Ingham; Yihai Cao

Mechanisms underlying pathological angiogenesis in relation to hypoxia in tumor invasion and metastasis remain elusive. Here, we have developed a zebrafish tumor model that allows us to study the role of pathological angiogenesis under normoxia and hypoxia in arbitrating early events of the metastatic cascade at the single cell level. Under normoxia, implantation of a murine T241 fibrosarcoma into the perivitelline cavity of developing embryos of transgenic fli1:EGFP zebrafish did not result in significant dissemination, invasion, and metastasis. In marked contrast, under hypoxia substantial tumor cells disseminated from primary sites, invaded into neighboring tissues, and metastasized to distal parts of the fish body. Similarly, expression of the hypoxia-regulated angiogenic factor, vascular endothelial growth factor (VEGF) to a high level resulted in tumor cell dissemination and metastasis, which correlated with increased tumor neovascularization. Inhibition of VEGF receptor signaling pathways by sunitinib or VEGFR2 morpholinos virtually completely ablated VEGF-induced tumor cell dissemination and metastasis. To the best of our knowledge, hypoxia- and VEGF-induced pathological angiogenesis in promoting tumor dissemination, invasion, and metastasis has not been described perviously at the single cell level. Our findings also shed light on molecular mechanisms of beneficial effects of clinically available anti-VEGF drugs for cancer therapy.


Seminars in Cancer Biology | 2015

Broad targeting of angiogenesis for cancer prevention and therapy

Zongwei Wang; Charlotta Dabrosin; Xin Yin; Mark M. Fuster; Alexandra Arreola; W.Kimryn Rathmell; Daniele Generali; Ganji Purnachandra Nagaraju; Bassel F. El-Rayes; Domenico Ribatti; Yi Charlie Chen; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Somaira Nowsheen; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Bill Helferich; Xujuan Yang; Gunjan Guha; Dipita Bhakta; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Dorota Halicka; Sulma I. Mohammed; Asfar S. Azmi; Alan Bilsland

Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


Nature Medicine | 2012

PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells

Yuan Xue; Sharon Lim; Yunlong Yang; Zongwei Wang; Lasse Jensen; Eva-Maria Hedlund; Patrik Andersson; Masakiyo Sasahara; Ola Larsson; Dagmar Galter; Renhai Cao; Kayoko Hosaka; Yihai Cao

The platelet-derived growth factor (PDGF) signaling system contributes to tumor angiogenesis and vascular remodeling. Here we show in mouse tumor models that PDGF-BB induces erythropoietin (EPO) mRNA and protein expression by targeting stromal and perivascular cells that express PDGF receptor-β (PDGFR-β). Tumor-derived PDGF-BB promoted tumor growth, angiogenesis and extramedullary hematopoiesis at least in part through modulation of EPO expression. Moreover, adenoviral delivery of PDGF-BB to tumor-free mice increased both EPO production and erythropoiesis, as well as protecting from irradiation-induced anemia. At the molecular level, we show that the PDGF-BB–PDGFR-bβ signaling system activates the EPO promoter, acting in part through transcriptional regulation by the transcription factor Atf3, possibly through its association with two additional transcription factors, c-Jun and Sp1. Our findings suggest that PDGF-BB–induced EPO promotes tumor growth through two mechanisms: first, paracrine stimulation of tumor angiogenesis by direct induction of endothelial cell proliferation, migration, sprouting and tube formation, and second, endocrine stimulation of extramedullary hematopoiesis leading to increased oxygen perfusion and protection against tumor-associated anemia.


PLOS ONE | 2008

Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy

Renhai Cao; Lasse Jensen; Iris Söll; Giselbert Hauptmann; Yihai Cao

Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs.


Nature Protocols | 2010

Hypoxia-induced metastasis model in embryonic zebrafish

Pegah Rouhi; Lasse Jensen; Ziquan Cao; Kayoko Hosaka; Toste Länne; Eric Wahlberg; John F. Steffensen; Yihai Cao

Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.


Nature Communications | 2013

Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis

Kayoko Hosaka; Yunlong Yang; Takahiro Seki; Masaki Nakamura; Patrik Andersson; Pegah Rouhi; Xiaojuan Yang; Lasse Jensen; Sharon Lim; Ninghan Feng; Yuan Xue; Xuri Li; Ola Larsson; Toshio Ohhashi; Yihai Cao

Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-β signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-β and inactivation of the PDGF-β signalling decreases integrin α1β1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.


PLOS ONE | 2009

Selective inhibition of retinal angiogenesis by targeting PI3 kinase

Yolanda Alvarez; Olaya Astudillo; Lasse Jensen; Alison L. Reynolds; Nora Waghorne; Derek P. Brazil; Yihai Cao; John J. O'Connor; Breandán N. Kennedy

Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.


Clinical Cancer Research | 2015

CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer

Susanne Svensson; Annelie Abrahamsson; Gabriela Vazquez Rodriguez; Anna-Karin Olsson; Lasse Jensen; Yihai Cao; Charlotta Dabrosin

Purpose: Novel therapeutic targets of estrogen receptor (ER)–positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models. Experimental Design: For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish. Results: ER+ cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment. Conclusions: Our findings shed new light on the mechanisms underlying the progression of ER+ breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways. Clin Cancer Res; 21(16); 3794–805. ©2015 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1

Lars Bräutigam; Lasse Jensen; Gereon Poschmann; Staffan Nyström; Sarah Bannenberg; Kristian Dreij; Klaudia Lepka; Timour Prozorovski; Sergio J. Montano; Orhan Aktas; Per Uhlén; Kai Stühler; Yihai Cao; Arne Holmgren; Carsten Berndt

Significance Embryonic development is one of the most amazing miracles in nature. The proteins and signaling events driving this highly complex process are far from being elucidated completely. For a long time, an important role of protein reduction and oxidation during development has been assumed. Here, we demonstrate the essential role of such a regulation during cardiovascular development: The modification of a single cysteine in the protein sirtuin 1 by the vertebrate-specific oxidoreductase glutaredoxin 2 is required for vessel formation and guidance. Our data indicate that this redox-signaling pathway based on glutaredoxin-dependent reversible S-glutathionylation may be also important for diseases of the cardiovascular system and pathological situations connected to angiogenesis, e.g., malignancies. Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione–disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD+-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis.


Nature Protocols | 2010

Hypoxia-induced retinopathy model in adult zebrafish

Ziquan Cao; Lasse Jensen; Pegah Rouhi; Kayoko Hosaka; Toste Länne; John F. Steffensen; Erik Wahlberg; Yihai Cao

Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available. In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1:EGFP zebrafish are placed in hypoxic water for 3–10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs.

Collaboration


Dive into the Lasse Jensen's collaboration.

Top Co-Authors

Avatar

Yihai Cao

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge