Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pegah Rouhi is active.

Publication


Featured researches published by Pegah Rouhi.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model

Samantha Lin Chiou Lee; Pegah Rouhi; Lasse Jensen; Danfang Zhang; Hong Ji; Giselbert Hauptmann; Philip W. Ingham; Yihai Cao

Mechanisms underlying pathological angiogenesis in relation to hypoxia in tumor invasion and metastasis remain elusive. Here, we have developed a zebrafish tumor model that allows us to study the role of pathological angiogenesis under normoxia and hypoxia in arbitrating early events of the metastatic cascade at the single cell level. Under normoxia, implantation of a murine T241 fibrosarcoma into the perivitelline cavity of developing embryos of transgenic fli1:EGFP zebrafish did not result in significant dissemination, invasion, and metastasis. In marked contrast, under hypoxia substantial tumor cells disseminated from primary sites, invaded into neighboring tissues, and metastasized to distal parts of the fish body. Similarly, expression of the hypoxia-regulated angiogenic factor, vascular endothelial growth factor (VEGF) to a high level resulted in tumor cell dissemination and metastasis, which correlated with increased tumor neovascularization. Inhibition of VEGF receptor signaling pathways by sunitinib or VEGFR2 morpholinos virtually completely ablated VEGF-induced tumor cell dissemination and metastasis. To the best of our knowledge, hypoxia- and VEGF-induced pathological angiogenesis in promoting tumor dissemination, invasion, and metastasis has not been described perviously at the single cell level. Our findings also shed light on molecular mechanisms of beneficial effects of clinically available anti-VEGF drugs for cancer therapy.


Nature Protocols | 2010

Hypoxia-induced metastasis model in embryonic zebrafish

Pegah Rouhi; Lasse Jensen; Ziquan Cao; Kayoko Hosaka; Toste Länne; Eric Wahlberg; John F. Steffensen; Yihai Cao

Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.


Journal of Clinical Investigation | 2014

Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis

Antti Arjonen; Riina Kaukonen; Elina Mattila; Pegah Rouhi; Gunilla Högnäs; Harri Sihto; Bryan W. Miller; Jennifer P. Morton; Elmar Bucher; Pekka Taimen; Reetta Virtakoivu; Yihai Cao; Owen J. Sansom; Heikki Joensuu; Johanna Ivaska

Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.


Nature Communications | 2013

Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis

Kayoko Hosaka; Yunlong Yang; Takahiro Seki; Masaki Nakamura; Patrik Andersson; Pegah Rouhi; Xiaojuan Yang; Lasse Jensen; Sharon Lim; Ninghan Feng; Yuan Xue; Xuri Li; Ola Larsson; Toshio Ohhashi; Yihai Cao

Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-β signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-β and inactivation of the PDGF-β signalling decreases integrin α1β1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.


Nature Protocols | 2010

Hypoxia-induced retinopathy model in adult zebrafish

Ziquan Cao; Lasse Jensen; Pegah Rouhi; Kayoko Hosaka; Toste Länne; John F. Steffensen; Erik Wahlberg; Yihai Cao

Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available. In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1:EGFP zebrafish are placed in hypoxic water for 3–10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs.


Cell Cycle | 2010

Pathological angiogenesis facilitates tumor cell dissemination and metastasis

Pegah Rouhi; Samantha Lin Chiou Lee; Ziquan Cao; Eva-Maria Hedlund; Lasse Jensen; Yihai Cao

Clinically detectable metastases represent an ultimate consequence of the metastatic cascade that consists of distinct processes including tumor cell invasion, dissemination, metastatic niche formation, and re-growth into a detectable metastatic mass. Although angiogenesis is known to promote tumor growth, its role in facilitating early events of the metastatic cascade remain poorly understood. We have recently developed a zebrafish tumor model that enables us to study involvement of pathological angiogenesis in tumor invasion, dissemination and metastasis. This non-invasive in vivo model allows detection of single malignant cell dissemination under both normoxia and hypoxia. Further, hypoxia-induced VEGF significantly facilitates tumor cell invasion and dissemination. These findings demonstrate that VEGF-induced pathological angiogenesis is essential for tumor dissemination and further corroborates potentially beneficial effects of clinically ongoing anti-VEGF drugs for the treatment of various malignancies.


Cancer Research | 2014

Genome-wide Profiling of AP-1–Regulated Transcription Provides Insights into the Invasiveness of Triple-Negative Breast Cancer

Chunyan Zhao; Yichun Qiao; Philip Jonsson; Jian Wang; Li Xu; Pegah Rouhi; Indranil Sinha; Yihai Cao; Cecilia Williams; Karin Dahlman-Wright

Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response

Xiaowei Zheng; Alex-Xianghua Zhou; Pegah Rouhi; Hidetaka Uramoto; Jan Borén; Yihai Cao; Teresa Pereira; Levent M. Akyürek; Lorenz Poellinger

Significance The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α (but not with HIF-2α) and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a fragment that enhances nuclear accumulation of HIF-1α and is corecruited to HIF-1α target promoters, resulting in enhanced gene expression. This mechanism helps to explain why FLNA is upregulated in certain tumors and offers opportunities in targeting the hypoxia signaling pathway therapeutically. The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a naturally occurring C-terminal fragment that accumulates in the cell nucleus. This fragment interacts with the N-terminal portion of HIF-1α spanning amino acid residues 1–390 but not with HIF-2α. In hypoxia this fragment facilitates the nuclear localization of HIF-1α, is recruited to HIF-1α target gene promoters, and enhances HIF-1α function, resulting in up-regulation of HIF-1α target gene expression in a hypoxia-dependent fashion. These results unravel an important mechanism that selectively regulates the nuclear accumulation and function of HIF-1α and potentiates angiogenesis and tumor progression.


Cancer Research | 2013

Abstract B90: Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model

Pegah Rouhi; Samantha Lin Chiou Lee; Lasse Jensen; Danfang Zhang; Hong Ji; Giselbert Hauptmann; Philip W. Ingham; Yihai Cao

Mechanisms underlying pathological angiogenesis in relation to hypoxia in tumor invasion and metastasis remain elusive. Here, we have developed a zebrafish tumor model that allows us to study the role of pathological angiogenesis under normoxia and hypoxia in arbitrating early events of the metastatic cascade at the single cell level. Under normoxia, implantation of a murine T241 fibrosarcoma into the perivitelline cavity of developing embryos of transgenic fli1:EGFP zebrafish did not result in significant dissemination, invasion, and metastasis. In marked contrast, under hypoxia substantial tumor cells disseminated from primary sites, invaded into neighboring tissues, and metastasized to distal parts of the fish body. Similarly, expression of the hypoxia-regulated angiogenic factor, vascular endothelial growth factor (VEGF) to a high level resulted in tumor cell dissemination and metastasis, which correlated with increased tumor neovascularization. Inhibition of VEGF receptor signaling pathways by sunitinib or VEGFR2 morpholinos virtually completely ablated VEGFinduced tumor cell dissemination and metastasis. To the best of our knowledge, hypoxia- and VEGF-induced pathological angiogenesis in promoting tumor dissemination, invasion, and metastasis has not been described perviously at the single cell level. Our findings also shed light on molecular mechanisms of beneficial effects of clinically available anti-VEGF drugs for cancer therapy. Citation Format: Pegah Rouhi, Samantha Lin Lee, Lasse Dahl Jensen, Danfang Zhang, Hong Ji, Giselbert Hauptmann, Philip Ingham, Yihai Cao. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Invasion and Metastasis; Jan 20-23, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;73(3 Suppl):Abstract nr B90.


Birth Defects Research Part C-embryo Today-reviews | 2011

Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases.

Lasse Jensen; Pegah Rouhi; Ziquan Cao; Toste Länne; Eric Wahlberg; Yihai Cao

Most in vivo preclinical disease models are based on mouse and other mammalian systems. However, these rodent-based model systems have considerable limitations to recapitulate clinical situations in human patients. Zebrafish have been widely used to study embryonic development, behavior, tissue regeneration, and genetic defects. Additionally, zebrafish also provides an opportunity to screen chemical compounds that target a specific cell population for drug development. Owing to the availability of various genetically manipulated strains of zebrafish, immune privilege during early embryonic development, transparency of the embryos, and easy and precise setup of hypoxia equipment, we have developed several disease models in both embryonic and adult zebrafish, focusing on studying the role of angiogenesis in pathological settings. These zebrafish disease models are complementary to the existing mouse models, allowing us to study clinically relevant processes in cancer and nonmalignant diseases, which otherwise would be difficult to study in mice. For example, dissemination and invasion of single human or mouse tumor cells from the primary site in association with tumor angiogenesis can be studied under normoxia or hypoxia in zebrafish embryos. Hypoxia-induced retinopathy in the adult zebrafish recapitulates the clinical situation of retinopathy development in diabetic patients or age-related macular degeneration. These zebrafish disease models offer exciting opportunities to understand the mechanisms of disease development, progression, and development of more effective drugs for therapeutic intervention.

Collaboration


Dive into the Pegah Rouhi's collaboration.

Top Co-Authors

Avatar

Yihai Cao

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ji

Karolinska Institutet

View shared research outputs
Researchain Logo
Decentralizing Knowledge