Lasse Tolonen
Aalto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lasse Tolonen.
Bioresource Technology | 2013
Marc Borrega; Lasse Tolonen; Fanny Bardot; Lidia Testova; Herbert Sixta
The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded.
Biomacromolecules | 2011
Lasse Tolonen; Gerhard Zuckerstätter; Paavo A. Penttilä; Walter Milacher; Wilhelm Habicht; Ritva Serimaa; Andrea Kruse; Herbert Sixta
Subcritical water is a high potential green chemical for the hydrolysis of cellulose. In this study microcrystalline cellulose was treated in subcritical water to study structural changes of the cellulose residues. The alterations in particle size and appearance were studied by scanning electron microscopy (SEM) and those in the degree of polymerization (DP) and molar mass distributions by gel permeation chromatography (GPC). Further, changes in crystallinity and crystallite dimensions were quantified by wide-angle X-ray scattering and (13)C solid-state NMR. The results showed that the crystallinity remained practically unchanged throughout the treatment, whereas the size of the remaining cellulose crystallites increased. Microcrystalline cellulose underwent significant depolymerization in subcritical water. However, depolymerization leveled off at a relatively high degree of polymerization. The molar mass distributions of the residues showed a bimodal form. We infer that cellulose gets dissolved in subcritical water only after extensive depolymerization.
Carbohydrate Research | 2015
Lasse Tolonen; Minna Juvonen; Klaus Niemelä; Atte Mikkelson; Maija Tenkanen; Herbert Sixta
Microcrystalline cellulose was treated in supercritical water at 380 °C and at a pressure of 250 bar for 0.2, 0.4, and 0.6s. The yield of the ambient-water-insoluble precipitate and its average molar mass decreased with an extended treatment time. The highest yield of 42 wt% for DP2-9 cello-oligosaccharides was achieved after the 0.4s treatment. The reaction products included also 11 wt% ambient-water-insoluble precipitate with a DP(w) of 16, and 6.1 wt% monomeric sugars, and 37 wt% unidentified degradation products. Oligo- and monosaccharide-derived dehydration and retro-aldol fragmentation products were analyzed via a combination of HPAEC-PAD-MS, ESI-MS/MS, and GC-MS techniques. The total amount of degradation products increased with treatment time, and fragmented (glucosyl(n)-erythrose, glucosyl(n)-glycolaldehyde), and dehydrated (glucosyl(n)-levoglucosan) were identified as the main oligomeric degradation products from the cello-oligosaccharides.
Cellulose | 2013
Paavo A. Penttilä; Petri Kilpeläinen; Lasse Tolonen; Jussi-Petteri Suuronen; Herbert Sixta; Stefan Willför; Ritva Serimaa
Pressurized hot water extraction with a flow-through system was used to extract hemicelluloses and lignin from birch sawdust. The structure of the extraction residue was studied on various levels. Molecular mass distributions were determined with gel permeation chromatography and the crystal structure of cellulose was characterized using wide-angle X-ray scattering (WAXS). Information on the short-range order of cellulose microfibrils and on the nanoscale pore structure was obtained with small-angle X-ray scattering (SAXS), and the micrometre scale cellular morphology was imaged with X-ray microtomography. The pressurized hot water treatment was observed to increase the lateral width of cellulose crystallites, determined with WAXS, whereas a possible small decrease in the crystallinity of cellulose compared to native wood was detected. The molecular mass of cellulose remained at a relatively high level. According to the SAXS results, a tighter lateral association of cellulose microfibrils was observed in the extracted samples, which possibly led to opening of pores between bundles of microfibrils, as indicated by an increased specific surface area. A reduction in the thickness of the fibre cell walls was evidenced by X-ray microtomography.
Journal of Physical Chemistry B | 2015
Lasse Tolonen; Malin Bergenstråhle-Wohlert; Herbert Sixta; Jakob Wohlert
The insolubility of cellulose in ambient water and most aqueous systems presents a major scientific and practical challenge. Intriguingly though, the dissolution of cellulose has been reported to occur in supercritical water. In this study, cellulose solubility in ambient and supercritical water of varying density (0.2, 0.7, and 1.0 g cm(-3)) was studied by atomistic molecular dynamics simulations using the CHARMM36 force field and TIP3P water. The Gibbs energy of dissolution was determined between a nanocrystal (4 × 4 × 20 anhydroglucose residues) and a fully dissociated state using the two-phase thermodynamics model. The analysis of Gibbs energy suggested that cellulose is soluble in supercritical water at each of the studied densities and that cellulose dissolution is typically driven by the entropy gain upon the chain dissociation while simultaneously hindered by the loss of solvent entropy. Chain dissociation caused density augmentation around the cellulose chains, which improved water-water bonding in low density supercritical water whereas the opposite occurred in ambient and high density supercritical water.
Chemsuschem | 2016
Ashley J. Holding; Valtteri Mäkelä; Lasse Tolonen; Herbert Sixta; Ilkka Kilpeläinen; Alistair W. T. King
High-molecular-weight celluloses (which even include bacterial cellulose) can be dissolved fully in methyltrioctylphosphonium acetate/[D6 ]DMSO solutions to allow the measurement of resonance-overlap-free 1 D and 2 D NMR spectra. This is achieved by a simple and non-destructive dissolution method, without solvent suppression, pre-treatment or deuteration of the ionic component. We studied a range of cellulose samples by using various NMR experiments to make an a priori assignment of the cellulose resonances. Chain-end resonances are also visible in the (1) H NMR spectrum. This allows the rough determination of the degree of polymerisation (DP) of a sample for low-DP celluloses by the integration of non-reducing chain ends C1 versus polymeric cellobiose C1. Low-DP celluloses show a good agreement with the gel-permeation chromatography (GPC) values, but high-DP pulps show more deviation. For high-purity pulps (pre-hydrolysis kraft and sulfite), residual xyloses and mannoses can also be identified from the (1) H-(13) C heteronuclear single-quantum coherence (HSQC) spectra. Resonances are thus assigned for the common polymeric polysaccharides found in chemical pulps.
Cellulose | 2014
Lidia Testova; Marc Borrega; Lasse Tolonen; Paavo A. Penttilä; Ritva Serimaa; Per Tomas Larsson; Herbert Sixta
Cellulose | 2013
Lasse Tolonen; Paavo A. Penttilä; Ritva Serimaa; Andrea Kruse; Herbert Sixta
Archive | 2013
Herbert Sixta; Michael Hummel; Mikhail Iakovlev; Lasse Tolonen
Nordic Pulp and Paper Research Journal | 2015
Jakob Wohlert; Lasse Tolonen; Malin Bergenstråhle-Wohlert