Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where László Dux is active.

Publication


Featured researches published by László Dux.


Journal of Molecular Biology | 1986

Three-dimensional reconstruction of negatively stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum

Kenneth A. Taylor; László Dux; Anthony Martonosi

The structure of the Ca2+ transport ATPase from rabbit skeletal muscle sarcoplasmic reticulum has been determined to 25 A resolution by three-dimensional image reconstruction of crystalline membrane tubules induced through exposure to Na3VO4 and preserved for electron microscopy in negative stain. The crystalline arrays have projection symmetry p2 and consist of chains of Ca2+-ATPase dimers arranged in a right-handed helix. The density map shows protein features that project from the membrane surface into the cytoplasm. The luminal side of the membrane tubules is featureless, presumably because very little of the Ca2+-ATPase molecule projects into the luminal space. The cytoplasmic region of the Ca2+-ATPase molecule is pear-shaped, with a lobe oriented nearly parallel to the axis of the dimer ribbons, about 16 A above the surface of the membrane bilayer. The structure seen in the maps has a volume of 71,000 A3, corresponding to a molecular weight of 57,000. The two Ca2+-ATPase profiles that constitute a dimer are connected by a stain-excluding bridge that is oriented parallel with the axis of the tubule at a height of about 42 A above the surface of the bilayer.


Journal of Molecular Biology | 1984

Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase

Kenneth A. Taylor; László Dux; Anthony Martonosi

The projected structure of the vanadate-induced crystalline aggregates of Ca2+-ATPase molecules in isolated sarcoplasmic reticulum membranes has been determined. The molecules form tubular crystals with an oblique surface lattice having cell dimensions a = 65.9 A, b = 114.4 A and gamma = 77.9 degrees. The space group is P2. The crystalline tubules are formed through lateral aggregation of chains made up of dimers of Ca2+-ATPase molecules.


Naunyn-schmiedebergs Archives of Pharmacology | 1997

Capsaicin-sensitive local sensory innervation is involved in pacing-induced preconditioning in rat hearts: role of nitric oxide and CGRP?

Péter Ferdinandy; Tamás Csont; Csaba Csonka; Marianna Török; Mária Dux; József Németh; László Horváth; László Dux; Zoltán Szilvássy; Gábor Jancsó

Abstract Among several mediators, nitric oxide (NO) and calcitonin gene-related peptide (CGRP) were suggested to be involved in the mechanism of preconditioning. We examined the possible role of the cardiac capsaicin-sensitive sensory innervation in pacing-induced preconditioning, as well as in the cardiac NO and CGRP content. Wistar rats were treated subcutaneously with capsaicin or its solvent in the sequence of 10, 30, and 50 mg/kg increasing single daily doses for 3 days to deplete neurotransmitters of the sensory innervation. Isolated hearts from both groups were then subjected to either preconditioning induced by three consecutive periods of pacing at 600 beats per minute for 5 min with 5 min interpacing periods, or time-matched non-preconditioning perfusion, followed by a 10-min coronary occlusion. NO content of left ventricular tissue samples was assayed by electron-spin resonance, and CGRP release was determined by radioimmunoassay. CGRP immunohistochemistry was also performed. In the non-preconditioned, solvent-treated group, coronary occlusion decreased cardiac output (CO) from 68.1 to 32.1 mL/min, increased left ventricular end-diastolic pressure (LVEDP) from 0.58 to 1.90 kPa, and resulted in 200 mU/min/g LDH release. Preconditioning significantly increased ischaemic CO to 42.9 mL/min (P < 0.05), decreased ischaemic LVEDP to 1.26 kPa (P < 0.05) and decreased LDH release to 47 mU/min/g (P < 0.05) in the solvent-treated group. Preconditioning did not confer protection in the capsaicin-pretreated group (ischaemic CO: 35.6 mL/min; LVEDP: 1.76 kPa; LDH 156 mU/min/g). Capsaicin-treatment markedly decreased cardiac NO content, CGRP release, and CGRP-immunoreactivity. Conclusions: (i) The presence of an intact local sensory innervation is a prerequisite to elicit pacing-induced preconditioning in the rat heart. (ii) A significant portion of cardiac basal NO content may be of neural origin. (iii) Release of NO and CGRP from capsaicin-sensitive nerves may be involved in the mechanism of pacing-induced preconditioning.


Neurochemistry International | 2007

Decreased serum and red blood cell kynurenic acid levels in Alzheimer's disease

Zsuzsanna Hartai; Anna Juhász; Ágnes Rimanóczy; Tamás Janáky; Teodóra Donkó; László Dux; Botond Penke; Gábor K. Tóth; Zoltán Janka; János Kálmán

Kynurenine aminotransferases (KAT I and KAT II) are responsible for the transamination of kynurenine (KYN) to form kynurenic acid (KYNA), an excitatory amino acid receptor antagonist. Since these members of the kynurenine pathway (KP) are proposed to be involved in the pathogenesis of Alzheimers dementia (AD), the activities of these enzymes and the levels of these metabolites were measured in the plasma and red blood cells (RBCs) of AD and control subjects together with the inheritance of the apolipoprotein (APOE) epsilon4 allele. KYNA levels were significantly decreased both in the plasma and in the RBCs in AD, but the levels of KYN and the activities of KAT I and KAT II remained unchanged. No association has been found with the possession of the epsilon4 allele. These findings indicate an altered peripheral KP in AD regardless of the APOE status of the probands.


Acta Neurologica Scandinavica | 2005

Kynurenine metabolism in multiple sclerosis

Zsuzsanna Hartai; Péter Klivényi; Tamás Janáky; Botond Penke; László Dux; László Vécsei

Objective –  Excitatory amino acid receptors are involved in the normal physiology of the brain, and may play a role in the pathogenesis of neurological disorders such as Huntingtons disease, Parkinsons disease, amyotrophic lateral sclerosis, etc. It has been demonstrated that the blockade of one of these receptors ameliorates the symptoms of experimental allergic encephalomyelitis, an animal model of multiple sclerosis (MS). In a recent study, a decreased level of kynurenic acid was found in the cerebrospinal fluid of patients with MS. The only known endogenous excitotoxin receptor antagonist is the tryptophan metabolite kynurenic acid. Another metabolite is quinolinic acid, which exerts different action: it is an excitotoxin receptor agonist. The ratio of these two metabolites is determined by the activities of kynurenine aminotransferase I and II (KAT I and KAT II). In this study, we measured the activities of these enzymes and the concentration of kynurenic acid in the red blood cells (RBC) and in the plasma of patients with MS. KAT activities were detected both in the RBC and in the plasma. As compared with the control subjects, the KAT I and KAT II activities were significantly higher in the RBC of the patients. The concentration of kynurenic acid is elevated in the plasma of MS patients, and there is a tendency to an elevation in the RBC. These changes may indicate a compensatory protective mechanism against excitatory neurotoxic effects. Our data demonstrate the involvement of the kynurenine system in the pathogenesis of MS, which may predict a novel therapeutic intervention.


Pflügers Archiv: European Journal of Physiology | 1992

Metabolite patterns related to exhaustion, recovery and transformation of chronically stimulated rabbit fast-twitch muscle

H. J. Green; Sabine Düsterhöft; László Dux; Dirk Pette

Rabbit fast-twitch tibialis anterior muscle was subjected to chronic low-frequency stimulation (10 Hz, 24 h/day). Measurements of the time course of changes in the concentration of metabolites of energy metabolism were performed in order to test the hypothesis whether or not alterations in the metabolite profile might represent possible signals for triggering muscle fibre type transformation. Most of the investigated metabolites displayed triphasic changes in response to persistently increased contractile activity. During the first 15 min of stimulation, drastic reductions were observed for adenosine triphoshate (ATP, 56%), phosphocreatine (PCr, 60%) and glycogen (76%), as well as 3- to 4-fold and 10-fold increases for glucose and lactate, respectively. This early metabolic perturbance coincided with a rapid reduction of isometric force. The next phase, extending to 4 days of stimulation, was characterized by a nearly complete recovery of ATP and PCr, and an overshoot in glycogen. The first signs of metabolic recovery were already detectable in 60-min-stimulated muscle when isometric force was still markedly depressed. These results demonstrated an impressive capability of the muscle to recover with ongoing stimulation from an initial, dramatic disturbance in energy metabolism. During the final phase, extending to 50 days, the metabolite profile approached that of a slow-twitch muscle with moderate reductions in total adenine nucleotides, ATP, total creatine, PCr and glycogen. A conspicuous result was the finding that, contrary to the recovery of most metabolites, the ratio of ATP to the product of free adenosine diphosphate and resting free inorganic phosphate was persistently depressed with ongoing stimulation. Therefore, the depressed phosphorylation potential of the adenylate system may be an important signal triggering muscle fibre type transformation.


Journal of Muscle Research and Cell Motility | 2000

Myostatin levels in regenerating rat muscles and in myogenic cell cultures.

Luca Mendler; Ernö Zádor; Mark Ver Heyen; László Dux; Frank Wuytack

Myostatin is a newly described member of the TGF-β superfamily acting as a secreted negative regulator of skeletal muscle mass in several species, but whose mode of action remains largely unknown. In the present work, we followed the myostatin mRNA and protein levels in rat soleus and extensor digitorum longus (EDL) muscles regenerating in vivo from notexin-induced necrosis, and the myostatin transcript levels in two different in vitro myogenic differentiation models: i.e. in mouse BC3H1 and C2C12 cultured cells. The in vivo regenerating rat skeletal muscles showed a characteristic time-dependent expression of myostatin mRNA. After notexin injection, the transcript levels dropped below the detection limit on day 1 in soleus and close to the detection limit on day 3 in EDL, then increased to a maximum on day 7 in soleus and after 28 days finally reached the control values in both types of muscles. In contrast, the myostatin protein levels increased dramatically on the first days of regeneration in both muscles, i.e. at the time when its transcript level was low. Later on the myostatin protein level gradually declined to normal in soleus while in EDL it stayed high some days longer and decreased to normal on days 21–28. In vitro proliferating myoblasts produced low level of myostatin mRNA, which increased upon induction of differentiation suggesting that functional innervation is no prerequisite for myostatin expression. Myostatin production in vitro seems not to be dependent on myocyte fusion either, since it is observed in differentiated BC3H1 cells, which are defective in myofiber formation.


Journal of Translational Medicine | 2015

Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study

Júlia Aliz Baán; Zoltán V. Varga; Przemysław Leszek; Mariusz Kuśmierczyk; Tamás Baranyai; László Dux; Péter Ferdinandy; Thomas Braun; Luca Mendler

BackgroundMyostatin (Mstn) is a key regulator of heart metabolism and cardiomyocyte growth interacting tightly with insulin-like growth factor I (IGF-I) under physiological conditions. The pathological role of Mstn has also been suggested since Mstn protein was shown to be upregulated in the myocardium of end-stage heart failure. However, no data are available about the regulation of gene expression of Mstn and IGF-I in different regions of healthy or pathologic human hearts, although they both might play a crucial role in the pathomechanism of heart failure.MethodsIn the present study, heart samples were collected from left ventricles, septum and right ventricles of control healthy individuals as well as from failing hearts of dilated (DCM) or ischemic cardiomyopathic (ICM) patients. A comprehensive qRT-PCR analysis of Mstn and IGF-I signaling was carried out by measuring expression of Mstn, its receptor Activin receptor IIB (ActRIIB), IGF-I, IGF-I receptor (IGF-IR), and the negative regulator of Mstn miR-208, respectively. Moreover, we combined the measured transcript levels and created complex parameters characterizing either Mstn- or IGF-I signaling in the different regions of healthy or failing hearts.ResultsWe have found that in healthy control hearts, the ratio of Mstn/IGF-I signaling was significantly higher in the left ventricle/septum than in the right ventricle. Moreover, Mstn transcript levels were significantly upregulated in all heart regions of DCM but not ICM patients. However, the ratio of Mstn/IGF-I signaling remained increased in the left ventricle/septum compared to the right ventricle of DCM patients (similarly to the healthy hearts). In contrast, in ICM hearts significant transcript changes were detected mainly in IGF-I signaling. In paralell with these results miR-208 showed mild upregulation in the left ventricle of both DCM and ICM hearts.ConclusionsThis is the first demonstration of a spatial asymmetry in the expression pattern of Mstn/IGF-I in healthy hearts, which is likely to play a role in the different growth regulation of left vs. right ventricle. Moreover, we identified Mstn as a massively regulated gene in DCM but not in ICM as part of possible compensatory mechanisms in the failing heart.


Journal of the Neurological Sciences | 2005

Kynurenine metabolism in plasma and in red blood cells in Parkinson's disease

Zsuzsanna Hartai; Péter Klivényi; Tamás Janáky; Botond Penke; László Dux; László Vécsei

Substantial evidence indicates that neuroactive kynurenine metabolites play a role in the normal physiology of the human brain, and are involved in the pathology of neurodegenerative disorders such as Parkinsons disease (PD). A sidearm product of the pathway, kynurenic acid (KYNA), which is synthesized by the irreversible transamination of kynurenine (KYN) by kynurenine aminotransferases (KAT I and KAT II), is an excitatory amino acid receptor antagonist. In the present study we measured the level of KYNA and the activities of the biosynthetic enzyme isoforms KAT I and KAT II in the plasma and in the erythrocytes (RBC) of 19 PD patients and 17 age-matched controls. The KAT I and KAT II activities were significantly lower in the plasma of PD patients, followed by a tendency to a decrease in plasma KYNA. An elevated KYNA level correlated with a significant increase in KAT II activity in the RBC of PD patients. These data support the contribution of an altered KYNA metabolism in the RBC to the pathogenesis of PD. The increased activity of KAT II in correlation with the elevated KYNA level in the RBC may mediate a consecutive protective response against excitatory neurotoxic effects.


Histochemistry and Cell Biology | 2005

Transient upregulation of connexin43 gap junctions and synchronized cell cycle control precede myoblast fusion in regenerating skeletal muscle in vivo

Anikó Görbe; David L. Becker; László Dux; Eva Stelkovics; László Krenács; Eniko Bagdi; Tibor Krenács

The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, −32, −37, −40, −43 and −45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.

Collaboration


Dive into the László Dux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Martonosi

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Deák

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge