Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mónika Kiricsi is active.

Publication


Featured researches published by Mónika Kiricsi.


Scientific Reports | 2016

Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

Dávid Kovács; Nóra Igaz; Csilla Keskeny; Péter Bélteky; Tímea Tóth; Renáta Gáspár; Dániel Madarász; Zsolt Rázga; Zoltán Kónya; Imre Boros; Mónika Kiricsi

Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches.


Journal of Histochemistry and Cytochemistry | 2008

Regeneration of Reinnervated Rat Soleus Muscle Is Accompanied by Fiber Transition Toward a Faster Phenotype

Luca Mendler; Sándor Pintér; Mónika Kiricsi; Zsuzsanna Baka; László Dux

The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer.

Dávid Kovács; Krisztina Szőke; Nóra Igaz; Gabriella Spengler; József Molnár; Tímea Tóth; Dániel Madarász; Zsolt Rázga; Zoltán Kónya; Imre Boros; Mónika Kiricsi

UNLABELLED The emergence of multidrug resistant (MDR) cancer phenotypes dramatically attenuates the efficiency of antineoplastic drug treatments often leading to the failure of chemotherapy. Therefore there is an urgent need to engineer new therapeutically useful agents and propose innovative approaches able to defeat resistant cancer cells. Although the remarkable anti-cancer features of silver nanoparticles (AgNPs) have already been delineated their impact on MDR cancer has never been investigated. Herein, we report that AgNPs have notable anti-proliferative effect and induce apoptosis mediated cell death both in drug sensitive and in MDR cancer cells. Furthermore we show evidence that AgNPs exert an inhibitory action on the efflux activity of MDR cancer cells which feature could be exploited to enhance drug accumulation. We verified synergistic interactions of AgNPs with six different antineoplastic agents on drug resistant cells which emphasizes the excellent potential of AgNPs as combinational partners in the chemotherapy of MDR cancer. FROM THE CLINICAL EDITOR The treatment of cancer often fails due to the development of multidrug resistant (MDR) cancer cells. Hence, novel approaches are being investigated to combat drug resistant cancer cells. One particular method studied here uses silver nanoparticles (AgNPs). The authors showed that AgNPs had anti-proliferative effect and ?exerted an inhibitory action on ABC transporter. The findings could suggest the possible use of AgNPs in combination with other chemotherapeutic agents in the clinical setting.


Journal of Cell Science | 2014

Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration.

Ferenc Deák; Lajos Mátés; Eva Korpos; Ágnes Zvara; Tibor Szénási; Mónika Kiricsi; Luca Mendler; Anikó Keller-Pintér; Béla Ózsvári; Hajnalka Juhász; Lydia Sorokin; László Dux; Nicolas Mermod; LászlóG G. Puskás; Ibolya Kiss

ABSTRACT Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-&bgr;1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2−/− relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2−/− fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.


International Journal of Nanomedicine | 2017

Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study

Andrea Rónavári; Dávid Kovács; Nóra Igaz; Csaba Vágvölgyi; Imre Boros; Zoltán Kónya; Ilona Pfeiffer; Mónika Kiricsi

Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.


Journal of Molecular and Cellular Cardiology | 2016

The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes.

Renáta Gáspár; Márton Pipicz; Fatime Hawchar; Dávid Kovács; Luna Djirackor; Anikó Görbe; Zoltán V. Varga; Mónika Kiricsi; Goran Petrovski; Attila Gácser; Csaba Csonka; Tamás Csont

AIMS Exogenously administered biglycan (core protein with high-molecular weight glycosaminoglycan chains) has been shown to protect neonatal cardiomyocytes against simulated ischemia/reperfusion injury (SI/R), however, the mechanism of action is not clear. In this study we aimed to investigate, which structural component of biglycan is responsible for its cardiocytoprotective effect and to further explore the molecular mechanisms involved in the cytoprotection. METHODS AND RESULTS A pilot study was conducted to demonstrate that both native (glycanated) and deglycanated biglycan can attenuate cell death induced by SI/R in a dose-dependent manner in primary neonatal cardiomyocytes isolated from Wistar rats. In separate experiments, we have shown that similarly to glycanated biglycan, recombinant human biglycan core protein (rhBGNc) protects cardiomyocytes against SI/R injury. In contrast, the glycosaminoglycan component dermatan sulfate had no significant effect on cell viability, while chondroitin sulfate further enhanced cell death induced by SI/R. Treatment of cardiomyocytes with rhBGNc reverses the effect of SI/R upon markers of necrosis, apoptosis, mitochondrial membrane potential, and autophagy. We have also shown that pharmacological blockade of Toll-like receptor 4 (TLR4) signaling or its downstream mediators (IRAK1/4, ERK, JNK and p38 MAP kinases) abolished the cytoprotective effect of rhBGNc against SI/R injury. Pretreatment of cardiomyocytes with rhBGNc for 20h resulted in increased Akt phosphorylation and NO production without having significant effect on phosphorylation of ERK1/2, STAT3, and on the production of superoxide. Treatment over 10min and 1h with rhBGNc increased ERK1 phosphorylation, while the SI/R-induced increase in superoxide production was attenuated by rhBGNc. Blockade of NO synthesis also prevented the cardiocytoprotective effect of rhBGNc. CONCLUSIONS The core protein of exogenous biglycan protects myocardial cells from SI/R injury via TLR4-mediated mechanisms involving activation of ERK, JNK and p38 MAP kinases and increased NO production. The cytoprotective effect of rhBGNc is due to modulation of SI/R-induced changes in necrosis, apoptosis and autophagy.


Colloids and Surfaces B: Biointerfaces | 2016

Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

Nóra Igaz; Dávid Kovács; Zsolt Rázga; Zoltán Kónya; Imre Boros; Mónika Kiricsi

Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols.


Journal of Basic Microbiology | 2016

Ion exchange defines the biological activity of titanate nanotubes

Andrea Rónavári; Dávid Kovács; Csaba Vágvölgyi; Zoltán Kónya; Mónika Kiricsi; Ilona Pfeiffer

One‐dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X‐ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells.


International Journal of Nanomedicine | 2018

Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes

Andrea Rónavári; Nóra Igaz; Mohana Krishna Gopisetty; Bettina Szerencsés; Dávid Kovács; Csaba Papp; Csaba Vágvölgyi; Imre Boros; Zoltán Kónya; Mónika Kiricsi; Ilona Pfeiffer

Background Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Methods Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Results Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Conclusion Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Multicomponent access to androstano-arylpyrimidines under microwave conditions and evaluation of their anti-cancer activity in vitro

Ádám Baji; Tamás Kiss; János Wölfling; Dávid Kovács; Nóra Igaz; Mohana Krishna Gopisetty; Mónika Kiricsi; Éva Frank

Collaboration


Dive into the Mónika Kiricsi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ibolya Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lajos Mátés

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Eva Korpos

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge