Latevi Max Lawson Daku
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Latevi Max Lawson Daku.
Journal of Chemical Physics | 2004
Antony Fouqueau; Sébastien Mer; Mark E. Casida; Latevi Max Lawson Daku; Andreas Hauser; Tsonka Mineva; Frank Neese
A comparison of density functionals is made for the calculation of energy and geometry differences for the high- [(5)T(2g): (t(2g))(4)(e(g))(2)] and low- [(1)A(1g): (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation [Fe(H(2)O)(6)](2+). Since very little experimental results are available (except for crystal structures involving the cation in its high-spin state), the primary comparison is with our own complete active-space self-consistent field (CASSCF), second-order perturbation theory-corrected complete active-space self-consistent field (CASPT2), and spectroscopy-oriented configuration interaction (SORCI) calculations. We find that generalized gradient approximations (GGAs) and the B3LYP hybrid functional provide geometries in good agreement with experiment and with our CASSCF calculations provided sufficiently extended basis sets are used (i.e., polarization functions on the iron and polarization and diffuse functions on the water molecules). In contrast, CASPT2 calculations of the low-spin-high-spin energy difference DeltaE(LH)=E(LS)-E(HS) appear to be significantly overestimated due to basis set limitations in the sense that the energy difference of the atomic asymptotes ((5)D-->(1)I excitation of Fe(2+)) are overestimated by about 3000 cm(-1). An empirical shift of the molecular DeltaE(LH) based upon atomic calculations provides a best estimate of 12 000-13 000 cm(-1). Our unshifted SORCI result is 13 300 cm(-1), consistent with previous comparisons between SORCI and experimental excitation energies which suggest that no such empirical shift is needed in conjunction with this method. In contrast, after estimation of incomplete basis set effects, GGAs with one exception underestimate this value by 3000-4000 cm(-1) while the B3LYP functional underestimates it by only about 1000 cm(-1). The exception is the GGA functional RPBE which appears to perform as well as or better than the B3LYP functional for the properties studied here. In order to obtain a best estimate of the molecular DeltaE(LH) within the context of density functional theory (DFT) calculations we have also performed atomic excitation energy calculations using the multiplet sum method. These atomic DFT calculations suggest that no empirical correction is needed for the DFT calculations.
Chemistry: A European Journal | 2010
Inge Lindemann; Roger Domènech Ferrer; Lothar Dunsch; Yaroslav Filinchuk; Radovan Černý; Hans Hagemann; Vincenza D'Anna; Latevi Max Lawson Daku; L. Schultz; O. Gutfleisch
The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.
Journal of Chemical Theory and Computation | 2012
Latevi Max Lawson Daku; Francesco Aquilante; Timothy W. Robinson; Andreas Hauser
Highly accurate estimates of the high-spin/low-spin energy difference ΔEHLel in the high-spin complexes [Fe(NCH)6]2+ and [Co(NCH)6]2+ have been obtained from the results of CCSD(T) calculations extrapolated to the complete basis set limit. These estimates are shown to be strongly influenced by scalar relativistic effects. They have been used to assess the performances of the CASPT2 method and 30 density functionals of the GGA, meta-GGA, global hybrid, RSH, and double-hybrid types. For the CASPT2 method, the results of the assessment support the proposal [Kepenekian, M.; Robert, V.; Le Guennic, B. J. Chem. Phys. 2009, 131, 114702] that the ionization potential–electron affinity (IPEA) shift defining the zeroth-order Hamiltonian be raised from its standard value of 0.25 au to 0.50–0.70 au for the determination of ΔEHLel in Fe(II) complexes with a [FeN6] core. At the DFT level, some of the assessed functionals proved to perform within chemical accuracy (±350 cm–1) for the spin-state energetics of [Fe(NCH)6]2...
Journal of Chemical Theory and Computation | 2006
Alfredo Vargas; Mohamed Zerara; Elmars Krausz; Andreas Hauser; Latevi Max Lawson Daku
State-of-the-art generalized gradient approximation (GGA) (PBE, OPBE, RPBE, OLYP, and HCTH), meta-GGA (VSXC and TPSS), and hybrid (B3LYP, B3LYP*, O3LYP, and PBE0) functionals are compared for the determination of the structure and the energetics of the D3 [Co(bpy)3](2+) complex in the (4)A2 and (4)E trigonal components of the high-spin (4)T1g([Formula: see text] [Formula: see text] ) state and in the low-spin (2)E state of octahedral (2)Eg([Formula: see text] [Formula: see text] ) parentage. Their comparison extends also to the investigation of the Jahn-Teller instability of the (2)E state through the characterization of the extrema of C2 symmetry of this spin states potential energy surface. The results obtained for [Co(bpy)3](2+) in either spin manifold are very consistent among the functionals used and are in good agreement with available experimental data. The functionals, however, perform very differently with respect to the spin-state energetics because the calculated values of the high-spin/low-spin energy difference Δ[Formula: see text] vary between -3212 and 3919 cm(-)(1). Semilocal functionals tend to give too large Δ[Formula: see text] values and thus fail to correctly predict the high-spin state as the ground state of the isolated complex, while hybrid functionals tend to overestimate the stability of the high-spin state with respect to the low-spin state. Reliable results are, however, obtained with the OLYP, HCTH, B3LYP*, and O3LYP functionals which perform best for the description of the isolated complex. The optical properties of [Co(bpy)3](2+) in the two spin states are also analyzed on the basis of electronic excitation calculations performed within time-dependent density functional response theory. The calculated absorption and circular dichroism spectra agree well with experimental results.
Chemistry: A European Journal | 2013
Flavia Pop; Anneliese Amacher; Narcis Avarvari; Jie Ding; Latevi Max Lawson Daku; Andreas Hauser; Marius Koch; Jürg Hauser; Shi-Xia Liu; Silvio Decurtins
Electrochemical and photophysical analysis of new donor-acceptor systems 2 and 3, in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular-charge-transfer (ICT) π(TTF)→π*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3, the intensity of the (1)ICT band is substantially higher compared to that in compound 2. The corresponding CT fluorescence is also observed in both cases. The radical cation TTF(+·) is easily observed through chemical and electrochemical oxidation by performing steady-state absorption experiments. Interestingly, compound 2 is photo-oxidized under aerobic conditions.
Journal of the American Chemical Society | 2017
Hoa Phan; Jeremy J. Hrudka; Dilyara Igimbayeva; Latevi Max Lawson Daku; Michael Shatruk
We propose a simple method for predicting the spin state of homoleptic complexes of the Fe(II) d6 ion with chelating diimine ligands. The approach is based on the analysis of a single metric parameter within a free (noncoordinated) ligand: the interatomic separation between the N-donor metal-binding sites. An extensive analysis of existing complexes allows the determination of critical N···N distances that dictate the regions of stability for the high-spin and low-spin complexes, as well as the intermediate range in which the magnetic bistability (spin crossover) can be observed. The prediction has been tested on several complexes that demonstrate the validity of our method.
Angewandte Chemie | 2011
Vesna Markovic; Diego Villamaina; I. Barabanov; Latevi Max Lawson Daku; Eric Vauthey
Even flow: Photoinduced symmetry-breaking charge separation takes place in a few picoseconds in a 1,3-bis(perylene)propane dyad in polar solvents. Polarized transient absorption measurements show that the direction of the charge flow is random and entirely governed by the fluctuations of the solvent orientation around the dyad.
Physical Chemistry Chemical Physics | 2010
Latevi Max Lawson Daku; Jorge Linares; Marie-Laure Boillot
We report a thorough investigation of the absorption spectra of the cis and trans isomers of the 4-styrylpyridine photoswitch based on TDDFT calculations. The spectra of both isomers were analysed first from the results of excitation calculations performed on their optimised geometries. The main absorption band of the cis isomer is thus predicted to be due to the S(0)--> S(1) and S(0)--> S(2) transitions, while the main absorption band of the trans isomer is predicted to originate exclusively from the S(0)--> S(1) transition. The convolution of the calculated oscillator strengths with Gaussians helped mimic the broadening of the electronic transitions. However, it proved necessary to use Gaussians with a large full width at half maximum of 5000 cm(-1); and, compared to experiment, the calculated main absorption bands of the two isomers are significantly red-shifted and far too symmetric. Consequently, as required for the detailed analysis of the finite-temperature absorption spectrum of a molecule as flexible as 4-styrylpyridine, the influence of the thermal fluctuations has been taken into account by calculating the spectra as time averages over Car-Parrinello molecular dynamics trajectories. For both isomers, this led to a noticeable improvement in the relative positions of the calculated and experimental main absorption bands, and the asymmetry of the calculated bands brings them in better agreement with the experimental ones. Furthermore, these last results show that, actually, the S(0)--> S(1) and S(0)--> S(2) transitions both contribute significantly to the finite-temperature main absorption bands of the two isomers. Finally, in order to also take the vibrational broadening into account, the Franck-Condon factors of the relevant vibrations were calculated within the displaced harmonic oscillator approximation. By thus taking both the thermal and the vibrational broadening into account for the calculation of the absorption bands, the agreement between experiment and theory could be further improved.
RSC Advances | 2013
Flavia Pop; Jie Ding; Latevi Max Lawson Daku; Andreas Hauser; Narcis Avarvari
The structurally characterized tetrathiafulvalene-1,2,4,5-tetrazine donor–acceptor system shows redox tuneable intramolecular charge transfer, solvatochromic and electrochromic behaviour. Attachment of a dipicolyl-amine chelating unit affords a multifunctional ligand, which allows the preparation of the ZnCl2 complex in which an anion-π interaction is seen.
Journal of Chemical Theory and Computation | 2009
Alfredo Vargas; Andreas Hauser; Latevi Max Lawson Daku
Density functional theory is applied within a supramolecular approach to the study of the guest−host interactions in [Fe(bpy)3]2+@Y and their influence on the structural, energetic, and 57Fe Mossbauer spectroscopy properties of the encapsulated [Fe(bpy)3]2+ complex in the low- and high-spin states. The structures of the isolated complex and the supramolecular model used for [Fe(bpy)3]2+@Y were optimized in both spin-states using different generalized gradient approximation (PBE, HCTH, OLYP) and hybrid (B3LYP*, O3LYP) functionals. The results obtained are consistent with one another and show that, in either spin-state, the structure of [Fe(bpy)3]2+ shrinks and distorts upon encapsulation. Still, the structural changes experienced by the complex in a given spin-state remain limited, especially in that they do not lead to a substantial variation of the 57Fe quadrupole splitting, whose calculated values are in very good agreement with avalaible experimental data. The decomposition of the guest−host interactio...