Latika Khatri
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Latika Khatri.
Neuron | 1998
Sapna Srivastava; Pavel Osten; F.S Vilim; Latika Khatri; G.J Inman; B.A States; Christopher Daly; S DeSouza; Ruben Abagyan; Juli G. Valtschanoff; Richard J. Weinberg; Edward B. Ziff
We report the cloning of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-binding protein (ABP), a postsynaptic density (PSD) protein related to glutamate receptor-interacting protein (GRIP) with two sets of three PDZ domains, which binds the GluR2/3 AMPA receptor subunits. ABP exhibits widespread CNS expression and is found at the postsynaptic membrane. We show that the protein interactions of the ABP/GRIP family differ from the PSD-95 family, which binds N-methyl-D-aspartate (NMDA) receptors. ABP binds to the GluR2/3 C-terminal VKI-COOH motif via class II hydrophobic PDZ interactions, distinct from the class I PSD-95-NMDA receptor interaction. ABP and GRIP also form homo- and heteromultimers through PDZ-PDZ interactions but do not bind PSD-95. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors.
Neuron | 1998
Pavel Osten; Sapna Srivastava; G.J Inman; F.S Vilim; Latika Khatri; L.M Lee; B.A States; Steven Einheber; Teresa A. Milner; Phyllis I. Hanson; Edward B. Ziff
In this study, we demonstrate specific interaction of the GluR2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit C-terminal peptide with an ATPase N-ethylmaleimide–sensitive fusion protein (NSF) and α- and β-soluble NSF attachment proteins (SNAPs), as well as dendritic colocalization of these proteins. The assembly of the GluR2–NSF–SNAP complex is ATP hydrolysis reversible and resembles the binding of NSF and SNAP with the SNAP receptor (SNARE) membrane fusion apparatus. We provide evidence that the molar ratio of NSF to SNAP in the GluR2–NSF–SNAP complex is similar to that of the t-SNARE syntaxin–NSF–SNAP complex. NSF is known to disassemble the SNARE protein complex in a chaperone-like interaction driven by ATP hydrolysis. We propose a model in which NSF functions as a chaperone in the molecular processing of the AMPA receptor.
The Journal of Neuroscience | 2001
Jose L. Perez; Latika Khatri; Craig Chang; Sapna Srivastava; Pavel Osten; Edward B. Ziff
The PICK1 protein interacts in neurons with the AMPA-type glutamate receptor subunit 2 (GluR2) and with several other membrane receptors via its single PDZ domain. We show that PICK1 also binds in neurons and in heterologous cells to protein kinase Cα (PKCα) and that the interaction is highly dependent on the activation of the kinase. The formation of PICK1–PKCα complexes is strongly induced by TPA, and PICK1–PKCα complexes are cotargeted with PICK1–GluR2 complexes to spines, where GluR2 is found to be phosphorylated by PKC on serine 880. PICK1 also reduces the plasma membrane levels of the GluR2 subunit, consistent with a targeting function of PICK1 and a PKC-facilitated release of GluR2 from the synaptic anchoring proteins ABP and GRIP. This work indicates that PICK1 functions as a targeting and transport protein that directs the activated form of PKCα to GluR2 in spines, leading to the activity-dependent release of GluR2 from synaptic anchor proteins and the PICK1-dependent transport of GluR2 from the synaptic membrane.
Neuron | 2002
Ingo H. Greger; Latika Khatri; Edward B. Ziff
AMPA-receptor (AMPAR) transport to synapses plays a critical role in the modulation of synaptic strength. We show that the functionally critical GluR2 subunit stably resides in an intracellular pool in the endoplasmic reticulum (ER). GluR2 in this pool is extensively complexed with GluR3 but not with GluR1, which is mainly confined to the cell surface. Mutagenesis revealed that elements in the C terminus including the PDZ motif are required for GluR2 forward-transport from the ER. Surprisingly, ER retention of GluR2 is controlled by Arg607 at the Q/R-editing site. Reversion to Gln (R607Q) resulted in rapid release from the pool and elevated surface expression of GluR2 in neurons. Therefore, Arg607 is a central regulator. In addition to channel gating, it also controls ER exit and may thereby ensure the availability of GluR2 for assembly into AMPARs.
Neuron | 2000
Pavel Osten; Latika Khatri; Joey L. Perez; Georg Köhr; Günter Giese; Christopher Daly; Torsten Wilhelm Schulz; Allen Wensky; Laveria M. Lee; Edward B. Ziff
We studied the role of PDZ proteins GRIP, ABP, and PICK1 in GluR2 AMPA receptor trafficking. An epitope-tagged MycGluR2 subunit, when expressed in hippocampal cultured neurons, was specifically targeted to the synaptic surface. With the mutant MycGluR2delta1-10, which lacks the PDZ binding site, the overall dendritic intracellular transport and the synaptic surface targeting were not affected. However, over time, Myc-GluR2delta1-10 accumulated at synapses significantly less than MycGluR2. Notably, a single residue substitution, S880A, which blocks binding to ABP/GRIP but not to PICK1, reduced synaptic accumulation to the same extent as the PDZ site truncation. We conclude that the association of GluR2 with ABP and/or GRIP but not PICK1 is essential for maintaining the synaptic surface accumulation of the receptor, possibly by limiting its endocytotic rate.
Neuron | 2003
Ingo H. Greger; Latika Khatri; Xiangpeng Kong; Edward B. Ziff
AMPA-type glutamate receptors (AMPARs) play a major role in excitatory synaptic transmission and plasticity. Channel properties are largely dictated by their composition of the four subunits, GluR1-4 (or A-D). Here we show that AMPAR assembly and subunit stoichiometry are determined by RNA editing in the pore loop. We demonstrate that editing at the GluR2 Q/R site regulates AMPAR assembly at the step of tetramerization. Specifically, edited R subunits are largely unassembled and ER retained, whereas unedited Q subunits readily tetramerize and traffic to synapses. This assembly mechanism restricts the number of the functionally critical R subunits in AMPAR tetramers. Therefore, a single amino acid residue affects channel composition and, in turn, controls ion conduction through the majority of AMPARs in the brain.
Neuron | 2002
Jonathan G. Hanley; Latika Khatri; Phyllis I. Hanson; Edward B. Ziff
Abstract AMPA receptor (AMPAR) trafficking is crucial for synaptic plasticity that may be important for learning and memory. NSF and PICK1 bind the AMPAR GluR2 subunit and are involved in trafficking of AMPARs. Here, we show that GluR2, PICK1, NSF, and α-/β-SNAPs form a complex in the presence of ATPγS. Similar to SNARE complex disassembly, NSF ATPase activity disrupts PICK1-GluR2 interactions in this complex. α- and β-SNAP have differential effects on this reaction. SNAP overexpression in hippocampal neurons leads to corresponding changes in AMPAR trafficking by acting on GluR2-PICK1 complexes. This demonstrates that the previously reported synaptic stabilization of AMPARs by NSF involves disruption of GluR2-PICK1 interactions. Furthermore, we are reporting a non-SNARE substrate for NSF disassembly activity.
Neuron | 2007
Yafell Serulle; Shuang Zhang; Ipe Ninan; Daniela Puzzo; Maria McCarthy; Latika Khatri; Ottavio Arancio; Edward B. Ziff
Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.
The Journal of Neuroscience | 2007
Gerald A. Rameau; David S. Tukey; Elsa D. Garcin-Hosfield; Roseann F. Titcombe; Charu Misra; Latika Khatri; Elizabeth D. Getzoff; Edward B. Ziff
Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 μm) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 μm glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.
Neuron | 2006
Ingo H. Greger; Pearl Akamine; Latika Khatri; Edward B. Ziff
The subunit composition determines AMPA receptor (AMPA-R) function and trafficking. Mechanisms underlying channel assembly are thus central to the efficacy and plasticity of glutamatergic synapses. We previously showed that RNA editing at the Q/R site of the GluR2 subunit contributes to the assembly of AMPA-R heteromers by attenuating formation of GluR2 homotetramers. Here we report that this function of the Q/R site depends on subunit contacts between adjacent ligand binding domains (LBDs). Changes of LBD interface contacts alter GluR2 assembly properties, forward traffic, and expression at synapses. Interestingly, developmentally regulated RNA editing within the LBD (at the R/G site) produces analogous effects. Our data reveal that editing to glycine reduces the self-assembly competence of this critical subunit and slows GluR2 maturation in the endoplasmic reticulum (ER). Therefore, RNA editing sites, located at strategic subunit interfaces, shape AMPA-R assembly and trafficking in a developmentally regulated manner.