Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Weinberg is active.

Publication


Featured researches published by Richard J. Weinberg.


Neuron | 1999

Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin.

Scott Naisbitt; Eunjoon Kim; Jian Cheng Tu; Bo Xiao; Carlo Sala; Juli G. Valtschanoff; Richard J. Weinberg; Paul F. Worley; Morgan Sheng

NMDA receptors are linked to intracellular cytoskeletal and signaling molecules via the PSD-95 protein complex. We report a novel family of postsynaptic density (PSD) proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP. A ternary complex of Shank/GKAP/PSD-95 assembles in heterologous cells and can be coimmunoprecipitated from rat brain. Synaptic localization of Shank in neurons is inhibited by a GKAP splice variant that lacks the Shank-binding C terminus. In addition to its PDZ domain, Shank contains a proline-rich region that binds to cortactin and a SAM domain that mediates multimerization. Shank may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD-95 complexes and coupling them to regulators of the actin cytoskeleton.


Nature | 2007

Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice.

Jeffrey M. Welch; Jing Lu; Ramona M. Rodriguiz; Nicholas C. Trotta; João Peça; Jin Dong Ding; Catia Feliciano; Meng Chen; J. Paige Adams; Jianhong Luo; Serena M. Dudek; Richard J. Weinberg; Nicole Calakos; William C. Wetsel; Guoping Feng

Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, although the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3; also known as DLGAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of Sapap3 exhibit increased anxiety and compulsive grooming behaviour leading to facial hair loss and skin lesions; both behaviours are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural and biochemical studies of Sapap3-mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of Sapap3 in the striatum rescues the synaptic and behavioural defects of Sapap3-mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviours.


Neuron | 1998

Novel Anchorage of GluR2/3 to the Postsynaptic Density by the AMPA Receptor–Binding Protein ABP

Sapna Srivastava; Pavel Osten; F.S Vilim; Latika Khatri; G.J Inman; B.A States; Christopher Daly; S DeSouza; Ruben Abagyan; Juli G. Valtschanoff; Richard J. Weinberg; Edward B. Ziff

We report the cloning of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-binding protein (ABP), a postsynaptic density (PSD) protein related to glutamate receptor-interacting protein (GRIP) with two sets of three PDZ domains, which binds the GluR2/3 AMPA receptor subunits. ABP exhibits widespread CNS expression and is found at the postsynaptic membrane. We show that the protein interactions of the ABP/GRIP family differ from the PSD-95 family, which binds N-methyl-D-aspartate (NMDA) receptors. ABP binds to the GluR2/3 C-terminal VKI-COOH motif via class II hydrophobic PDZ interactions, distinct from the class I PSD-95-NMDA receptor interaction. ABP and GRIP also form homo- and heteromultimers through PDZ-PDZ interactions but do not bind PSD-95. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors.


Neuron | 2005

The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines

Kimberley F. Tolias; Jay B. Bikoff; Alain Burette; Suzanne Paradis; Dana B. Harrar; Sohail F. Tavazoie; Richard J. Weinberg; Michael E. Greenberg

NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.


Neuron | 1998

CRIPT, a Novel Postsynaptic Protein that Binds to the Third PDZ Domain of PSD-95/SAP90

Martin Niethammer; Juli G. Valtschanoff; Tarun M. Kapoor; Daniel W. Allison; Richard J. Weinberg; Ann Marie Craig; Morgan Sheng

The synaptic protein PSD-95/SAP90 binds to and clusters a variety of membrane proteins via its two N-terminal PDZ domains. We report a novel protein, CRIPT, which is highly conserved from mammals to plants and binds selectively to the third PDZ domain (PDZ3) of PSD-95 via its C terminus. While conforming to the consensus PDZ-binding C-terminal sequence (X-S/T-X-V-COOH), residues at the -1 position and upstream of the last four amino acids of CRIPT determine its specificity for PDZ3. In heterologous cells, CRIPT causes a redistribution of PSD-95 to microtubules. In brain, CRIPT colocalizes with PSD-95 in the postsynaptic density and can be coimmunoprecipitated with PSD-95 and tubulin. These findings suggest that CRIPT may regulate PSD-95 interaction with a tubulin-based cytoskeleton in excitatory synapses.


Human Molecular Genetics | 2011

Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3

Xiaoming Wang; Portia A. McCoy; Ramona M. Rodriguiz; Yanzhen Pan; H. Shawn Je; Adam C. Roberts; Caroline J. Kim; Janet Berrios; Jennifer S. Colvin; Danielle Bousquet-Moore; Isabel Lorenzo; Gang-Yi Wu; Richard J. Weinberg; Michael D. Ehlers; Benjamin D. Philpot; Arthur L. Beaudet; William C. Wetsel; Yong-hui Jiang

SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Small microdeletions and point mutations in SHANK3 have been identified in a small subgroup of individuals with autism spectrum disorder (ASD) and intellectual disability. SHANK3 also plays a key role in the chromosome 22q13.3 microdeletion syndrome (Phelan-McDermid syndrome), which includes ASD and cognitive dysfunction as major clinical features. To evaluate the role of Shank3 in vivo, we disrupted major isoforms of the gene in mice by deleting exons 4-9. Isoform-specific Shank3(e4-9) homozygous mutant mice display abnormal social behaviors, communication patterns, repetitive behaviors and learning and memory. Shank3(e4-9) male mice display more severe impairments than females in motor coordination. Shank3(e4-9) mice have reduced levels of Homer1b/c, GKAP and GluA1 at the PSD, and show attenuated activity-dependent redistribution of GluA1-containing AMPA receptors. Subtle morphological alterations in dendritic spines are also observed. Although synaptic transmission is normal in CA1 hippocampus, long-term potentiation is deficient in Shank3(e4-9) mice. We conclude that loss of major Shank3 species produces biochemical, cellular and morphological changes, leading to behavioral abnormalities in mice that bear similarities to human ASD patients with SHANK3 mutations.


Neuron | 2005

Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis

April C. Horton; Bence Rácz; Eric Monson; Anna L. Lin; Richard J. Weinberg; Michael D. Ehlers

Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outposts partition selectively into longer dendrites and are excluded from axons. In dendrites, Golgi outposts concentrate at branchpoints where they engage in post-Golgi trafficking. Within the cell body, the Golgi apparatus orients toward the longest dendrite, and this Golgi polarity precedes asymmetric dendrite growth. Manipulations that selectively block post-Golgi trafficking halt dendrite growth in developing neurons and cause a shrinkage of dendrites in mature pyramidal neurons. Further, disruption of Golgi polarity produces neurons with symmetric dendritic arbors lacking a single longest principal dendrite. These results define a novel polarized organization of neuronal secretory trafficking and demonstrate a mechanistic link between directed membrane trafficking and asymmetric dendrite growth.


The Journal of Neuroscience | 2008

Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1

Albert Y. Hung; Kensuke Futai; Carlo Sala; Juli G. Valtschanoff; Jubin Ryu; Mollie A. Woodworth; Fleur L. Kidd; Clifford C. Sung; Tsuyoshi Miyakawa; Mark F. Bear; Richard J. Weinberg; Morgan Sheng

Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.


Neuron | 2002

Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting

Michael Wyszynski; Eunjoon Kim; Anthone W. Dunah; Maria Passafaro; Juli G. Valtschanoff; Carles Serra-Pagès; Michel Streuli; Richard J. Weinberg; Morgan Sheng

Abstract Interaction with the multi-PDZ protein GRIP is required for the synaptic targeting of AMPA receptors, but the underlying mechanism is unknown. We show that GRIP binds to the liprin-α/SYD2 family of proteins that interact with LAR receptor protein tyrosine phosphatases (LAR-RPTPs) and that are implicated in presynaptic development. In neurons, liprin-α and LAR-RPTP are enriched at synapses and coimmunoprecipitate with GRIP and AMPA receptors. Dominant-negative constructs that interfere with the GRIP-liprin interaction disrupt the surface expression and dendritic clustering of AMPA receptors in cultured neurons. Thus, by mediating the targeting of liprin/GRIP-associated proteins, liprin-α is important for postsynaptic as well as presynaptic maturation.


Nature Neuroscience | 2009

Ube3a is required for experience-dependent maturation of the neocortex

Koji Yashiro; Thorfinn T. Riday; Kathryn H. Condon; Adam C. Roberts; Danilo R. Bernardo; Rohit Prakash; Richard J. Weinberg; Michael D. Ehlers; Benjamin D. Philpot

Experience-dependent maturation of neocortical circuits is required for normal sensory and cognitive abilities, which are distorted in neurodevelopmental disorders. We tested whether experience-dependent neocortical modifications require Ube3a, an E3 ubiquitin ligase whose dysregulation has been implicated in autism and Angelman syndrome. Using visual cortex as a model, we found that experience-dependent maturation of excitatory cortical circuits was severely impaired in Angelman syndrome model mice deficient in Ube3a. This developmental defect was associated with profound impairments in neocortical plasticity. Normal plasticity was preserved under conditions of sensory deprivation, but was rapidly lost by sensory experiences. The loss of neocortical plasticity is reversible, as late-onset visual deprivation restored normal synaptic plasticity. Furthermore, Ube3a-deficient mice lacked ocular dominance plasticity in vivo when challenged with monocular deprivation. We conclude that Ube3a is necessary for maintaining plasticity during experience-dependent neocortical development and suggest that the loss of neocortical plasticity contributes to deficits associated with Angelman syndrome.

Collaboration


Dive into the Richard J. Weinberg's collaboration.

Top Co-Authors

Avatar

Alain Burette

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Juli G. Valtschanoff

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Aldo Rustioni

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristen D. Phend

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Philpot

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge