Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laufey Amundadottir is active.

Publication


Featured researches published by Laufey Amundadottir.


Nature Genetics | 2009

Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer

Laufey Amundadottir; Peter Kraft; Rachael Z. Stolzenberg-Solomon; Charles S. Fuchs; Gloria M. Petersen; Alan A. Arslan; H. Bas Bueno-de-Mesquita; Myron D. Gross; Kathy J. Helzlsouer; Eric J. Jacobs; Andrea Z. LaCroix; Wei Zheng; Demetrius Albanes; William R. Bamlet; Christine D. Berg; Franco Berrino; Sheila Bingham; Julie E. Buring; Paige M. Bracci; Federico Canzian; Françoise Clavel-Chapelon; Sandra Clipp; Michelle Cotterchio; Mariza de Andrade; Eric J. Duell; John W. Fox; Steven Gallinger; J. Michael Gaziano; Edward Giovannucci; Michael Goggins

We conducted a two-stage genome-wide association study of pancreatic cancer, a cancer with one of the lowest survival rates worldwide. We genotyped 558,542 SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls drawn from 12 prospective cohorts plus one hospital-based case-control study. We conducted a combined analysis of these groups plus an additional 2,457 affected individuals and 2,654 controls from eight case-control studies, adjusting for study, sex, ancestry and five principal components. We identified an association between a locus on 9q34 and pancreatic cancer marked by the SNP rs505922 (combined P = 5.37 × 10−8; multiplicative per-allele odds ratio 1.20; 95% confidence interval 1.12–1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B.


Nature Genetics | 2009

Identification of a new prostate cancer susceptibility locus on chromosome 8q24.

Meredith Yeager; Nilanjan Chatterjee; Julia Ciampa; Kevin B. Jacobs; Jesus Gonzalez-Bosquet; Richard B. Hayes; Peter Kraft; Sholom Wacholder; Nick Orr; Sonja I. Berndt; Kai Yu; Amy Hutchinson; Zhaoming Wang; Laufey Amundadottir; Heather Spencer Feigelson; Michael J. Thun; W. Ryan Diver; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Geraldine Cancel-Tassin; Olivier Cussenot; Antoine Valeri; Gerald L. Andriole; E. David Crawford; Christopher A. Haiman; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand

We report a genome-wide association study in 10,286 cases and 9,135 controls of European ancestry in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. We identify a new association with prostate cancer risk on chromosome 8q24 (rs620861, P = 1.3 × 10−10, heterozygote OR = 1.17, 95% CI 1.10–1.24; homozygote OR = 1.33, 95% CI 1.21–1.45). This defines a new locus associated with prostate cancer susceptibility on 8q24.


JAMA Internal Medicine | 2010

Anthropometric Measures, Body Mass Index and Pancreatic Cancer: a Pooled Analysis from the Pancreatic Cancer Cohort Consortium (PanScan)

Alan A. Arslan; Kathy J. Helzlsouer; Charles Kooperberg; Xiao-Ou Shu; Emily Steplowski; H. Bas Bueno-de-Mesquita; Charles S. Fuchs; Myron D. Gross; Eric J. Jacobs; Andrea Z. LaCroix; Gloria M. Petersen; Rachael Z. Stolzenberg-Solomon; Wei Zheng; Demetrius Albanes; Laufey Amundadottir; William R. Bamlet; Aurelio Barricarte; Sheila Bingham; Heiner Boeing; Marie-Christine Boutron-Ruault; Julie E. Buring; Stephen J. Chanock; Sandra Clipp; J. Michael Gaziano; Edward Giovannucci; Susan E. Hankinson; Patricia Hartge; Robert N. Hoover; David J. Hunter; Amy Hutchinson

BACKGROUND Obesity has been proposed as a risk factor for pancreatic cancer. METHODS Pooled data were analyzed from the National Cancer Institute Pancreatic Cancer Cohort Consortium (PanScan) to study the association between prediagnostic anthropometric measures and risk of pancreatic cancer. PanScan applied a nested case-control study design and included 2170 cases and 2209 control subjects. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression for cohort-specific quartiles of body mass index (BMI [calculated as weight in kilograms divided by height in meters squared]), weight, height, waist circumference, and waist to hip ratio as well as conventional BMI categories (underweight, <18.5; normal weight, 18.5-24.9; overweight, 25.0-29.9; obese, 30.0-34.9; and severely obese, > or = 35.0). Models were adjusted for potential confounders. RESULTS In all of the participants, a positive association between increasing BMI and risk of pancreatic cancer was observed (adjusted OR for the highest vs lowest BMI quartile, 1.33; 95% CI, 1.12-1.58; P(trend) < .001). In men, the adjusted OR for pancreatic cancer for the highest vs lowest quartile of BMI was 1.33 (95% CI, 1.04-1.69; P(trend) < .03), and in women it was 1.34 (95% CI, 1.05-1.70; P(trend) = .01). Increased waist to hip ratio was associated with increased risk of pancreatic cancer in women (adjusted OR for the highest vs lowest quartile, 1.87; 95% CI, 1.31-2.69; P(trend) = .003) but less so in men. CONCLUSIONS These findings provide strong support for a positive association between BMI and pancreatic cancer risk. In addition, centralized fat distribution may increase pancreatic cancer risk, especially in women.


American Journal of Epidemiology | 2009

Cigarette Smoking and Pancreatic Cancer: A Pooled Analysis From the Pancreatic Cancer Cohort Consortium

Shannon M. Lynch; Alina Vrieling; Jay H. Lubin; Peter Kraft; Julie B. Mendelsohn; Patricia Hartge; Federico Canzian; Emily Steplowski; Alan A. Arslan; Myron D. Gross; Kathy J. Helzlsouer; Eric J. Jacobs; Andrea Z. LaCroix; Gloria M. Petersen; Wei Zheng; Demetrius Albanes; Laufey Amundadottir; Sheila Bingham; Paolo Boffetta; Marie-Christine Boutron-Ruault; Stephen J. Chanock; Sandra Clipp; Robert N. Hoover; Kevin B. Jacobs; Karen C. Johnson; Charles Kooperberg; Juhua Luo; Catherine R. Messina; Domenico Palli; Alpa V. Patel

Smoking is an established risk factor for pancreatic cancer; however, detailed examination of the association of smoking intensity, smoking duration, and cumulative smoking dose with pancreatic cancer is limited. The authors analyzed pooled data from the international Pancreatic Cancer Cohort Consortium nested case-control study (1,481 cases, 1,539 controls). Odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression. Smoking intensity effects were examined with an excess odds ratio model that was linear in pack-years and exponential in cigarettes smoked per day and its square. When compared with never smokers, current smokers had a significantly elevated risk (odds ratio (OR) = 1.77, 95% confidence interval (CI): 1.38, 2.26). Risk increased significantly with greater intensity (> or =30 cigarettes/day: OR = 1.75, 95% CI: 1.27, 2.42), duration (> or =50 years: OR = 2.13, 95% CI: 1.25, 3.62), and cumulative smoking dose (> or =40 pack-years: OR = 1.78, 95% CI: 1.35, 2.34). Risk more than 15 years after smoking cessation was similar to that for never smokers. Estimates of excess odds ratio per pack-year declined with increasing intensity, suggesting greater risk for total exposure delivered at lower intensity for longer duration than for higher intensity for shorter duration. This finding and the decline in risk after smoking cessation suggest that smoking has a late-stage effect on pancreatic carcinogenesis.


Cancer Research | 2010

Pancreatic Cancer Risk and ABO Blood Group Alleles: Results from the Pancreatic Cancer Cohort Consortium

Brian M. Wolpin; Peter Kraft; Myron D. Gross; Kathy J. Helzlsouer; H.B . Bueno-de-Mesquita; Emily Steplowski; Rachael Z. Stolzenberg-Solomon; Alan A. Arslan; Eric J. Jacobs; Andrea Z. LaCroix; Gloria M. Petersen; Wei Zheng; Demetrios Albanes; Naomi E. Allen; Laufey Amundadottir; Garnet L. Anderson; M. C. Boutron-Ruault; Julie E. Buring; Federico Canzian; Stephen J. Chanock; Sandra Clipp; John Michael Gaziano; Edward Giovannucci; G. Hallmans; Susan E. Hankinson; Robert N. Hoover; David J. Hunter; Amy Hutchinson; Kevin B. Jacobs; Charles Kooperberg

A recent genome-wide association study (PanScan) identified significant associations at the ABO gene locus with risk of pancreatic cancer, but the influence of specific ABO genotypes remains unknown. We determined ABO genotypes (OO, AO, AA, AB, BO, and BB) in 1,534 cases and 1,583 controls from 12 prospective cohorts in PanScan, grouping participants by genotype-derived serologic blood type (O, A, AB, and B). Adjusted odds ratios (ORs) for pancreatic cancer by ABO alleles were calculated using logistic regression. Compared with blood type O, the ORs for pancreatic cancer in subjects with types A, AB, and B were 1.38 [95% confidence interval (95% CI), 1.18-1.62], 1.47 (95% CI, 1.07-2.02), and 1.53 (95% CI, 1.21-1.92), respectively. The incidence rates for blood types O, A, AB, and B were 28.9, 39.9, 41.8, and 44.5 cases per 100,000 subjects per year. An increase in risk was noted with the addition of each non-O allele. Compared with OO genotype, subjects with AO and AA genotype had ORs of 1.33 (95% CI, 1.13-1.58) and 1.61 (95% CI, 1.22-2.18), whereas subjects with BO and BB genotypes had ORs of 1.45 (95% CI, 1.14-1.85) and 2.42 (1.28-4.57). The population attributable fraction for non-O blood type was 19.5%. In a joint model with smoking, current smokers with non-O blood type had an adjusted OR of 2.68 (95% CI, 2.03-3.54) compared with nonsmokers of blood type O. We concluded that ABO genotypes were significantly associated with pancreatic cancer risk.A recent genome-wide association study (PanScan) identified significant associations at the ABO gene locus with pancreatic cancer risk; however, the mechanisms underlying these associations and the influence of specific ABO genotypes remain unknown. We determined ABO genotypes (OO, AO, AA, AB, BO, BB) in 1534 cases and 1583 controls from 12 prospective cohort studies participating in PanScan. We also grouped participants by genotype-derived serologic blood type (O, A, AB, B). Adjusted odds ratios (ORs) for pancreatic cancer by ABO alleles were calculated using logistic regression. Compared to blood type O, the ORs for pancreatic cancer in subjects with types A, AB, and B were 1.38 (95% confidence interval [CI], 1.18-1.62), 1.47 (95% CI, 1.07-2.02), and 1.53 (95% CI, 1.21-1.92), respectively. The incidence rates (cases per 100,000 subjects per year) for blood types O, A, AB, and B were 28.9, 39.9, 41.8, and 44.5. An increase in risk was noted with the addition of each non-O allele. Compared to OO, subjects with AO and AA had ORs of 1.33 (95% CI, 1.13-1.58) and 1.61 (95% CI, 1.22-2.18), while subjects with BO and BB had ORs of 1.45 (95% CI, 1.14-1.85) and 2.42 (1.28-4.57). The population attributable fraction for non-O blood type was 19.5%. In a joint model with smoking, current smokers with non-O blood type had an adjusted OR of 2.68 (95% CI, 2.03-3.54), compared with non-smokers with blood type O. Among participants in a large prospective cohort consortium, ABO genotypes were significantly associated with pancreatic cancer risk.


Nature Communications | 2014

Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

Jianxin Shi; Crystal N. Marconett; Jubao Duan; Paula L. Hyland; Peng Li; Zhaoming Wang; William Wheeler; Beiyun Zhou; Mihaela Campan; Diane S. Lee; Jing Huang; Weiyin Zhou; Timothy J. Triche; Laufey Amundadottir; Andrew Warner; Amy Hutchinson; Po Han Chen; Brian Chung; Angela C. Pesatori; Dario Consonni; Pier Alberto Bertazzi; Andrew W. Bergen; Mathew Freedman; Kimberly D. Siegmund; Benjamin P. Berman; Zea Borok; Nilanjan Chatterjee; Margaret A. Tucker; Neil E. Caporaso; Stephen J. Chanock

The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome.


International Journal of Cancer | 2010

Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan).

Eric J. Jacobs; Stephen J. Chanock; Charles S. Fuchs; Andrea Z. LaCroix; Robert R. McWilliams; Emily Steplowski; Rachael Z. Stolzenberg-Solomon; Alan A. Arslan; H. Bas Bueno-de-Mesquita; Myron D. Gross; Kathy J. Helzlsouer; Gloria M. Petersen; Wei Zheng; Ilir Agalliu; Naomi E. Allen; Laufey Amundadottir; Marie Christine Boutron-Ruault; Julie E. Buring; Federico Canzian; Sandra Clipp; Miren Dorronsoro; J. Michael Gaziano; Edward Giovannucci; Susan E. Hankinson; Patricia Hartge; Robert N. Hoover; David J. Hunter; Kevin B. Jacobs; Mazda Jenab; Peter Kraft

A family history of pancreatic cancer has consistently been associated with increased risk of pancreatic cancer. However, uncertainty remains about the strength of this association. Results from previous studies suggest a family history of select cancers (i.e., ovarian, breast and colorectal) could also be associated, although not as strongly, with increased risk of pancreatic cancer. We examined the association between a family history of 5 types of cancer (pancreas, prostate, ovarian, breast and colorectal) and risk of pancreatic cancer using data from a collaborative nested case‐control study conducted by the Pancreatic Cancer Cohort Consortium. Cases and controls were from cohort studies from the United States, Europe and China, and a case‐control study from the Mayo Clinic. Analyses of family history of pancreatic cancer included 1,183 cases and 1,205 controls. A family history of pancreatic cancer in a parent, sibling or child was associated with increased risk of pancreatic cancer [multivariate‐adjusted odds ratios (ORs) = 1.76, 95% confidence interval (CI) = 1.19–2.61]. A family history of prostate cancer was also associated with increased risk (OR = 1.45, 95% CI = 1.12–1.89). There were no statistically significant associations with a family history of ovarian cancer (OR = 0.82, 95% CI = 0.52–1.31), breast cancer (OR = 1.21, 95% CI = 0.97–1.51) or colorectal cancer (OR = 1.17, 95% CI = 0.93–1.47). Our results confirm a moderate sized association between a family history of pancreatic cancer and risk of pancreatic cancer and also provide evidence for an association with a family history of prostate cancer worth further study.


Nature Genetics | 2015

Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer.

Erica J. Childs; Evelina Mocci; Daniele Campa; Paige M. Bracci; Steven Gallinger; Michael Goggins; Donghui Li; Rachel E. Neale; Sara H. Olson; Ghislaine Scelo; Laufey Amundadottir; William R. Bamlet; Maarten F. Bijlsma; Amanda Blackford; Michael Borges; Paul Brennan; Hermann Brenner; H. Bas Bueno-de-Mesquita; Federico Canzian; Gabriele Capurso; Giulia Martina Cavestro; Kari G. Chaffee; Stephen J. Chanock; Sean P. Cleary; Michelle Cotterchio; Lenka Foretova; Charles S. Fuchs; Niccola Funel; Maria Gazouli; Manal Hassan

Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19–1.34, P = 1.42 × 10−14), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84–0.92, P = 1.41 × 10−8) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85–0.93, P = 2.35 × 10−8). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09–1.19, P = 3.36 × 10−9), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.


PLOS ONE | 2013

An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population

Alison P. Klein; Sara Lindström; Julie B. Mendelsohn; Emily Steplowski; Alan A. Arslan; H. Bas Bueno-de-Mesquita; Charles S. Fuchs; Steven Gallinger; Myron D. Gross; Kathy J. Helzlsouer; Elizabeth A. Holly; Eric J. Jacobs; Andrea Z. LaCroix; Donghui Li; Margaret T. Mandelson; Sara H. Olson; Gloria M. Petersen; Harvey A. Risch; Rachael Z. Stolzenberg-Solomon; Wei Zheng; Laufey Amundadottir; Demetrius Albanes; Naomi E. Allen; William R. Bamlet; Marie-Christine Boutron-Ruault; Julie E. Buring; Paige M. Bracci; Federico Canzian; Sandra Clipp; Michelle Cotterchio

Purpose We developed an absolute risk model to identify individuals in the general population at elevated risk of pancreatic cancer. Patients and Methods Using data on 3,349 cases and 3,654 controls from the PanScan Consortium, we developed a relative risk model for men and women of European ancestry based on non-genetic and genetic risk factors for pancreatic cancer. We estimated absolute risks based on these relative risks and population incidence rates. Results Our risk model included current smoking (multivariable adjusted odds ratio (OR) and 95% confidence interval: 2.20 [1.84–2.62]), heavy alcohol use (>3 drinks/day) (OR: 1.45 [1.19–1.76]), obesity (body mass index >30 kg/m2) (OR: 1.26 [1.09–1.45]), diabetes >3 years (nested case-control OR: 1.57 [1.13–2.18], case-control OR: 1.80 [1.40–2.32]), family history of pancreatic cancer (OR: 1.60 [1.20–2.12]), non-O ABO genotype (AO vs. OO genotype) (OR: 1.23 [1.10–1.37]) to (BB vs. OO genotype) (OR 1.58 [0.97–2.59]), rs3790844(chr1q32.1) (OR: 1.29 [1.19–1.40]), rs401681(5p15.33) (OR: 1.18 [1.10–1.26]) and rs9543325(13q22.1) (OR: 1.27 [1.18–1.36]). The areas under the ROC curve for risk models including only non-genetic factors, only genetic factors, and both non-genetic and genetic factors were 58%, 57% and 61%, respectively. We estimate that fewer than 3/1,000 U.S. non-Hispanic whites have more than a 5% predicted lifetime absolute risk. Conclusion Although absolute risk modeling using established risk factors may help to identify a group of individuals at higher than average risk of pancreatic cancer, the immediate clinical utility of our model is limited. However, a risk model can increase awareness of the various risk factors for pancreatic cancer, including modifiable behaviors.


Carcinogenesis | 2012

Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer

Donghui Li; Eric J. Duell; Kai Yu; Harvey A. Risch; Sara H. Olson; Charles Kooperberg; Brian M. Wolpin; Li Jiao; Xiaoqun Dong; Bill Wheeler; Alan A. Arslan; H. Bas Bueno-de-Mesquita; Charles S. Fuchs; Steven Gallinger; Myron D. Gross; Patricia Hartge; Robert N. Hoover; Elizabeth A. Holly; Eric J. Jacobs; Alison P. Klein; Andrea Z. LaCroix; Margaret T. Mandelson; Gloria M. Petersen; Wei Zheng; Ilir Agalliu; Demetrius Albanes; Marie Christine Boutron-Ruault; Paige M. Bracci; Julie E. Buring; Federico Canzian

Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10(-6), 1.6 × 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10(-5)), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.

Collaboration


Dive into the Laufey Amundadottir's collaboration.

Top Co-Authors

Avatar

Stephen J. Chanock

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Demetrius Albanes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert N. Hoover

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinping Jia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge