Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura A. Dada is active.

Publication


Featured researches published by Laura A. Dada.


Journal of Clinical Investigation | 2003

Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ

Laura A. Dada; Navdeep S. Chandel; Karen M. Ridge; Carlos H. Pedemonte; Alejandro M. Bertorello; Jacob I. Sznajder

During ascent to high altitude and pulmonary edema, the alveolar epithelial cells (AEC) are exposed to hypoxic conditions. Hypoxia inhibits alveolar fluid reabsorption and decreases Na,K-ATPase activity in AEC. We report here that exposure of AEC to hypoxia induced a time-dependent decrease of Na,K-ATPase activity and a parallel decrease in the number of Na,K-ATPase alpha(1) subunits at the basolateral membrane (BLM), without changing its total cell protein abundance. These effects were reversible upon reoxygenation and specific, because the plasma membrane protein GLUT1 did not decrease in response to hypoxia. Hypoxia caused an increase in mitochondrial reactive oxygen species (ROS) levels that was inhibited by antioxidants. Antioxidants prevented the hypoxia-mediated decrease in Na,K-ATPase activity and protein abundance at the BLM. Hypoxia-treated AEC deficient in mitochondrial DNA (rho(0) cells) did not have increased levels of ROS, nor was the Na,K-ATPase activity inhibited. Na,K-ATPase alpha(1) subunit was phosphorylated by PKC in hypoxia-treated AEC. In AEC treated with a PKC-zeta antagonist peptide or with the Na,K-ATPase alpha(1) subunit lacking the PKC phosphorylation site (Ser-18), hypoxia failed to decrease Na,K-ATPase abundance and function. Accordingly, we provide evidence that hypoxia decreases Na,K-ATPase activity in AEC by triggering its endocytosis through mitochondrial ROS and PKC-zeta-mediated phosphorylation of the Na,K-ATPase alpha(1) subunit.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1.

Guofei Zhou; Laura A. Dada; Minghua Wu; Aileen M. Kelly; Humberto E. Trejo; Qiyuan Zhou; John Varga; Jacob I. Sznajder

Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of alpha-SMA and vimentin was prevented in mitochondria-deficient rho(0) cells, which are incapable of ROS production during hypoxia. CoCl(2) and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-alpha under normoxia, failed to induce alpha-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1alpha did not induce alpha-SMA. However, loss of HIF-1alpha or HIF-2alpha abolished induction of alpha-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-beta1, and preincubation of AEC with SB431542, an inhibitor of the TGF-beta1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-beta1 dependent. Furthermore, both ROS and HIF-alpha were necessary for hypoxia-induced TGF-beta1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-beta1 signaling.


Journal of Clinical Investigation | 2008

AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis

István Vadász; Laura A. Dada; Arturo Briva; Humberto E. Trejo; Lynn C. Welch; Jiwang Chen; Peter T. Toth; Emilia Lecuona; Lee A. Witters; Paul T. Schumacker; Navdeep S. Chandel; Werner Seeger; Jacob I. Sznajder

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


PLOS ONE | 2007

High CO2 levels impair alveolar epithelial function independently of pH.

Arturo Briva; István Vadász; Emilia Lecuona; Lynn C. Welch; Jiwang Chen; Laura A. Dada; Humberto E. Trejo; Vidas Dumasius; Zaher S. Azzam; Pavlos Myrianthefs; Daniel Batlle; Yosef Gruenbaum; Jacob I. Sznajder

Background In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes ∼40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. Principal Findings We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCζ which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. Conclusions Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.


Molecular and Cellular Biology | 2009

α1-AMP-Activated Protein Kinase Regulates Hypoxia-Induced Na,K-ATPase Endocytosis via Direct Phosphorylation of Protein Kinase Cζ

Galina A. Gusarova; Laura A. Dada; Aileen M. Kelly; Chaya Brodie; Lee A. Witters; Navdeep S. Chandel; Jacob I. Sznajder

ABSTRACT Hypoxia promotes Na,K-ATPase endocytosis via protein kinase Cζ (PKCζ)-mediated phosphorylation of the Na,K-ATPase α subunit. Here, we report that hypoxia leads to the phosphorylation of 5′-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK α subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient ρ0-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKCζ translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK α phosphorylates PKCζ on residue Thr410 within the PKCζ activation loop. Importantly, the activation of AMPK α was necessary for hypoxia-induced AMPK-PKCζ binding in alveolar epithelial cells. The overexpression of T410A mutant PKCζ prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKCζ Thr410 phosphorylation is essential for this process. PKCζ activation by AMPK is isoform specific, as small interfering RNA targeting the α1 but not the α2 catalytic subunit prevented PKCζ activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK α1 isoform, which binds and directly phosphorylates PKCζ at Thr410, thereby promoting Na,K-ATPase endocytosis.


Circulation Research | 2006

Hypoxia-Mediated Degradation of Na,K-ATPase via Mitochondrial Reactive Oxygen Species and the Ubiquitin-Conjugating System

Alejandro P. Comellas; Laura A. Dada; Emilia Lecuona; Liuska Pesce; Navdeep S. Chandel; Nancy Quesada; G. R. Scott Budinger; Ger J. Strous; Aaron Ciechanover; Jacob I. Sznajder

We set out to determine whether cellular hypoxia, via mitochondrial reactive oxygen species, promotes Na,K-ATPase degradation via the ubiquitin-conjugating system. Cells exposed to 1.5% O2 had a decrease in Na,K-ATPase activity and oxygen consumption. The total cell pool of α1 Na,K-ATPase protein decreased on exposure to 1.5% O2 for 30 hours, whereas the plasma membrane Na,K-ATPase was 50% degraded after 2 hours of hypoxia, which was prevented by lysosome and proteasome inhibitors. When Chinese hamster ovary cells that exhibit a temperature-sensitive defect in E1 ubiquitin conjugation enzyme were incubated at 40°C and 1.5% O2, the degradation of the α1 Na,K-ATPase was prevented. Exogenous reactive oxygen species increased the plasma membrane Na,K-ATPase degradation, whereas, in mitochondrial DNA deficient &rgr;0 cells and in cells transfected with small interfering RNA against Rieske iron sulfur protein, the hypoxia-mediated Na,K-ATPase degradation was prevented. The catalase/superoxide dismutase (SOD) mimetic (EUK-134) and glutathione peroxidase overexpression prevented the hypoxia-mediated Na,K-ATPase degradation and overexpression of SOD1, but not SOD2, partially inhibited the Na+ pump degradation. Accordingly, we provide evidence that during hypoxia, mitochondrial reactive oxygen species are necessary to degrade the plasma membrane Na,K-ATPase via the ubiquitin-conjugating system.


Molecular and Cellular Biology | 2011

Hypoxia Leads to Na,K-ATPase Downregulation via Ca2+ Release-Activated Ca2+ Channels and AMPK Activation

Galina A. Gusarova; Humberto E. Trejo; Laura A. Dada; Arturo Briva; Lynn C. Welch; Robert B. Hamanaka; Gökhan M. Mutlu; Navdeep S. Chandel; Murali Prakriya; Jacob I. Sznajder

ABSTRACT To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca2+ from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca2+ release-activated Ca2+ (CRAC) channels. This increase in intracellular Ca2+ induces Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca2+ concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca2+ signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.


Molecular and Cellular Biology | 2009

α1-AMP-activated protein kinase (AMPK) regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of PKCζ

Galina A. Gusarova; Laura A. Dada; Aileen M. Kelly; Chaya Brodie; Lee A. Witters; Navdeep S. Chandel; Jacob I. Sznajder

ABSTRACT Hypoxia promotes Na,K-ATPase endocytosis via protein kinase Cζ (PKCζ)-mediated phosphorylation of the Na,K-ATPase α subunit. Here, we report that hypoxia leads to the phosphorylation of 5′-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK α subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient ρ0-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKCζ translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK α phosphorylates PKCζ on residue Thr410 within the PKCζ activation loop. Importantly, the activation of AMPK α was necessary for hypoxia-induced AMPK-PKCζ binding in alveolar epithelial cells. The overexpression of T410A mutant PKCζ prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKCζ Thr410 phosphorylation is essential for this process. PKCζ activation by AMPK is isoform specific, as small interfering RNA targeting the α1 but not the α2 catalytic subunit prevented PKCζ activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK α1 isoform, which binds and directly phosphorylates PKCζ at Thr410, thereby promoting Na,K-ATPase endocytosis.


American Journal of Physiology-cell Physiology | 2012

The Na-K-ATPase α1β1 heterodimer as a cell adhesion molecule in epithelia

Olga Vagin; Laura A. Dada; Elmira Tokhtaeva; George Sachs

The ion gradients generated by the Na-K-ATPase play a critical role in epithelia by driving transepithelial transport of various solutes. The efficiency of this Na-K-ATPase-driven vectorial transport depends on the integrity of epithelial junctions that maintain polar distribution of membrane transporters, including the basolateral sodium pump, and restrict paracellular diffusion of solutes. The review summarizes the data showing that, in addition to pumping ions, the Na-K-ATPase located at the sites of cell-cell junction acts as a cell adhesion molecule by interacting with the Na-K-ATPase of the adjacent cell in the intercellular space accompanied by anchoring to the cytoskeleton in the cytoplasm. The review also discusses the experimental evidence on the importance of a specific amino acid region in the extracellular domain of the Na-K-ATPase β(1) subunit for the Na-K-ATPase trans-dimerization and intercellular adhesion. Furthermore, a possible role of N-glycans linked to the Na-K-ATPase β(1) subunit in regulation of epithelial junctions by modulating β(1)-β(1) interactions is discussed.


Journal of Cell Science | 2007

Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells

Laura A. Dada; Eva Novoa; Emilia Lecuona; Haiying Sun; Jacob I. Sznajder

Hypoxia impairs alveolar fluid reabsorption by promoting Na,K-ATPase endocytosis, from the plasma membrane of alveolar epithelial cells. The present study was designed to determine whether hypoxia induces Na,K-ATPase endocytosis via reactive oxygen species (ROS)-mediated RhoA activation. In A549 cells, RhoA activation occurred within 15 minutes of cells exposure to hypoxia. This activation was inhibited in cells infected with adenovirus coding for gluthatione peroxidase (an H2O2 scavenger), in mitochondria depleted (ρ0) cells or cells expressing decreased levels of the Rieske iron-sulfur protein (inhibitor of mitochondrial complex III), which suggests a role for mitochondrial ROS. Moreover, exogenous H2O2 treatment during normoxia mimicked the effects of hypoxia on RhoA, further supporting a role for ROS. Cells expressing dominant negative RhoA failed to endocytose the Na,K-ATPase during hypoxia or after H2O2 treatment. Na,K-ATPase endocytosis was also prevented in cells treated with Y-27632, a Rho-associated kinase (ROCK) inhibitor, and in cells expressing dominant negative ROCK. In summary, we provide evidence that in human alveolar epithelial cells exposed to hypoxia, RhoA/ROCK activation is necessary for Na,K-ATPase endocytosis via a mechanism that requires mitochondrial ROS.

Collaboration


Dive into the Laura A. Dada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guofei Zhou

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Olga Vagin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos F. Mendez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Cora Cymeryng

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge