Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Barberi is active.

Publication


Featured researches published by Laura Barberi.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Lifelong Physical Exercise Delays Age-Associated Skeletal Muscle Decline

Sandra Zampieri; Laura Pietrangelo; Stefan Loefler; Hannah Fruhmann; Michael Vogelauer; Samantha Burggraf; Amber Pond; M. Grim-Stieger; Jan Cvecka; Milan Sedliak; Veronika Tirpakova; Winfried Mayr; Nejc Sarabon; Katia Rossini; Laura Barberi; M. De Rossi; Vanina Romanello; Simona Boncompagni; Antonio Musarò; Marco Sandri; Feliciano Protasi; Ugo Carraro; Helmut Kern

Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification. All together, our results indicate that: (a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-matched sedentaries and (b) signaling pathways controlling muscle mass and metabolism are differently modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, bioenergetic characteristics, and phenotype. Thus, regular physical activity is a good strategy to attenuate age-related general decay of muscle structure and function (ClinicalTrials.gov: NCT01679977).


Molecular Therapy | 2015

Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization.

Joanne Tonkin; Lieve Temmerman; Robert D. Sampson; Enrique Gallego-Colon; Laura Barberi; Daniel Bilbao; Michael D. Schneider; Antonio Musarò; Nadia Rosenthal

Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration.


Biogerontology | 2013

Age-dependent alteration in muscle regeneration: the critical role of tissue niche

Laura Barberi; Bianca Maria Scicchitano; Manuela De Rossi; Anne Bigot; Stephanie Duguez; Aurore Wielgosik; Claire E. Stewart; Jamie S. McPhee; Maria Conte; Marco V. Narici; Claudio Franceschi; Vincent Mouly; Gillian Butler-Browne; Antonio Musarò

Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle. Our study, along with other studies, demonstrated that although the regenerative program can also be impaired by the limited proliferative capacity of satellite cells, this limit is not reached during normal aging, and it is more likely that the restricted muscle repair program in aging is presumably due to missing signals that usually render the damaged muscle a permissive environment for regenerative activity.


Frontiers in Aging Neuroscience | 2014

Electrical Stimulation Counteracts Muscle Decline in Seniors

Helmut Kern; Laura Barberi; Stefan Löfler; Simona Sbardella; Samantha Burggraf; Hannah Fruhmann; Ugo Carraro; Simone Mosole; Nejc Sarabon; Michael Vogelauer; Winfried Mayr; Matthias Krenn; Jan Cvecka; Vanina Romanello; Laura Pietrangelo; Feliciano Protasi; Marco Sandri; Sandra Zampieri; Antonio Musarò

The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise. We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function. We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity. ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF-1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis. Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.


Methods of Molecular Biology | 2010

Isolation and Culture of Mouse Satellite Cells

Antonio Musarò; Laura Barberi

Muscle tissue culture provides a system for studying the growth and differentiation of muscle cells in a controlled environment. In mature muscle tissue, terminally differentiated myocytes form multinucleate syncytia in which structural and regulatory genes are expressed and the contractile apparatus is assembled. Adult muscle fibres are characterized by the presence of satellite cells. These are a quiescent population of myogenic cells that reside between the basal lamina and the plasmalemma of terminally differentiated muscle fibres and are rapidly activated in response to appropriate stimuli. This chapter describes protocols used in our laboratory for isolating and culturing satellite cells isolated from mouse skeletal muscles. In particular we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction, and the culture conditions which optimize proliferation and myotube formation of mouse satellite cells.


Muscle & Nerve | 2010

Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors.

Roberta Melchionna; Anna Di Carlo; Roberta De Mori; Claudia Cappuzzello; Laura Barberi; Antonio Musarò; Chiara Cencioni; Nobutaka Fujii; Hirokazu Tamamura; Marco Crescenzi; Maurizio C. Capogrossi; Monica Napolitano; Antonia Germani

The stromal cell–derived factor (SDF)‐1/CXC receptor 4 (CXCR4) axis has been shown to play a role in skeletal muscle development, but its contribution to postnatal myogenesis and the role of the alternate SDF‐1 receptor, CXC receptor 7 (CXCR7), are poorly characterized. Western blot analysis and real‐time polymerase chain reaction (PCR) were performed to evaluate in vitro the effect of SDF‐1 and CXCR4 and CXCR7 inhibition on myogenic differentiation. Proliferating myoblasts express CXCR4, CXCR7, and SDF‐1; during myogenic differentiation, CXCR4 and CXCR7 levels are downregulated, and SDF‐1 release is decreased. SDF‐1 anticipates myosin heavy chain accumulation and myotube formation in both C2C12 myoblasts and satellite cells. Interestingly, inhibition of CXCR4 and CXCR7 signaling, either by drugs or RNA interfererence, blocks myogenic differentiation. Further, the CXCR4 antagonist, 4F‐benzoyl‐TN14003, inhibits myoblast cell cycle withdrawal and decreases the retinoblastoma gene (pRb) product accumulation in its hypophosphorylated form. Our experiments demonstrate that SDF‐1 regulates myogenic differentiation via both CXCR4 and CXCR7 chemokine receptors. Muscle Nerve 000:000–000, 2010


PLOS ONE | 2013

Increased Plin2 Expression in Human Skeletal Muscle Is Associated with Sarcopenia and Muscle Weakness

Maria Conte; Francesco Vasuri; Giovanni Trisolino; Elena Bellavista; Aurelia Santoro; Alessio Degiovanni; Ermanno Martucci; Antonia D'Errico-Grigioni; Daniela Caporossi; Miriam Capri; Andrea B. Maier; Olivier R. Seynnes; Laura Barberi; Antonio Musarò; Marco V. Narici; Claudio Franceschi; Stefano Salvioli

Human aging is associated with a progressive loss of muscle mass and strength and a concomitant fat accumulation in form of inter-muscular adipose tissue, causing skeletal muscle function decline and immobilization. Fat accumulation can also occur as intra-muscular triglycerides (IMTG) deposition in lipid droplets, which are associated with perilipin proteins, such as Perilipin2 (Plin2). It is not known whether Plin2 expression changes with age and if this has consequences on muscle mass and strength. We studied the expression of Plin2 in the vastus lateralis (VL) muscle of both healthy subjects and patients affected by lower limb mobility limitation of different age. We found that Plin2 expression increases with age, this phenomenon being particularly evident in patients. Moreover, Plin2 expression is inversely correlated with quadriceps strength and VL thickness. To investigate the molecular mechanisms underpinning this phenomenon, we focused on IGF-1/p53 network/signalling pathway, involved in muscle physiology. We found that Plin2 expression strongly correlates with increased p53 activation and reduced IGF-1 expression. To confirm these observations made on humans, we studied mice overexpressing muscle-specific IGF-1, which are protected from sarcopenia. These mice resulted almost negative for the expression of Plin2 and p53 at two years of age. We conclude that fat deposition within skeletal muscle in form of Plin2-coated lipid droplets increases with age and is associated with decreased muscle strength and thickness, likely through an IGF-1- and p53-dependent mechanism. The data also suggest that excessive intramuscular fat accumulation could be the initial trigger for p53 activation and consequent loss of muscle mass and strength.


European Journal of Translational Myology | 2015

Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors

Laura Barberi; Bianca Maria Scicchitano; Antonio Musarò

The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..


BioMed Research International | 2014

IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity

Michele Pelosi; Manuela De Rossi; Laura Barberi; Antonio Musarò

IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice), interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program.


European Journal of Histochemistry | 2007

Stem cell-mediated muscle regeneration and repair in aging and neuromuscular diseases

Antonio Musarò; Cristina Giacinti; Laura Pelosi; Gabriella Dobrowolny; Laura Barberi; Chiara Nardis; Dario Coletti; Bianca Maria Scicchitano; Sergio Adamo; Mario Molinaro

One of the most exciting aspirations of current medical science is the regeneration of damaged body parts. The capacity of adult tissues to regenerate in response to injury stimuli represents an important homeostatic process that until recently was thought to be limited in mammals to tissues with high turnover such as blood and skin. However, it is now generally accepted that each tissue type, even those considered post-mitotic, such as nerve or muscle, contains a reserve of undifferentiated progenitor cells, loosely termed stem cells, participating in tissue regeneration and repair. Skeletal muscle regeneration is a coordinate process in which several factors are sequentially activated to maintain and preserve muscle structure and function upon injury stimuli. In this review, we will discuss the role of stem cells in muscle regeneration and repair and the critical role of specific factors, such as IGF-1, vasopressin and TNF-alpha, in the modulation of the myogenic program and in the regulation of muscle regeneration and homeostasis.Branching morphogenesis is a multi-step process that controls the formation of polarised tubules starting from hollow cysts. Its execution entails a series of rate-limiting events which include reversible disruption of cell polarity, dismantling of intercellular contacts, acquisition of a motile phenotype, stimulation of cell proliferation, and final re-establishment of cell polarity for creation of the definitive structures. Branching morphogenesis takes place physiologically during development, accounting for the establishment of organs endowed with a ramified architecture such as glands, the respiratory tract and the vasculartree. In cancer, aberrant implementation of branching morphogenesis leads to deregulated proliferation, protection from apoptosis and enhanced migratory/invasive properties, which together exacerbate the aggressive features of neoplastic cells. Under both physiological and pathological conditions, branching morphogenesis is mainly accomplished by a family of growth factors known as scatter factors. In this review, we will summarise the current knowledge on the biological and functional roles of scatter factors during branching morphogenesis, with a special emphasis on the phenotypic (structural and histological) consequences of scatter factor activity in different tissues.We present here findings obtained on a large number of human tissues over a period of more than ten years, by our modification of the Osmium maceration method for high resolution scanning electron microscopy (HRSEM). Data are documented by original pictures which illustrate both some 3-D intracellular features not previously shown in human tissues, and results obtained in our current studies on mitochondrial morphology and on the secretory process of salivary glands. We have demonstrated that mitochondria of cells of practically all human tissues and organs have usually tubular cristae, and that even the cristae that look lamellar are joined to the inner mitochondrial membrane by tubular connexions similar to the crista junctions later seen by electron tomography. Concerning salivary glands an important result is the development of a morphometric method that allows the quantitative evaluation of the secretory events.

Collaboration


Dive into the Laura Barberi's collaboration.

Top Co-Authors

Avatar

Antonio Musarò

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Carmine Nicoletti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Cvecka

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Giacinti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Emanuele Rizzuto

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Pelosi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Manuela De Rossi

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge