Laura Pelosi
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Pelosi.
The FASEB Journal | 2007
Laura Pelosi; Cristina Giacinti; Chiara Nardis; Giovanna Borsellino; Emanuele Rizzuto; Carmine Nicoletti; Francesca Wannenes; Luca Battistini; Nadia Rosenthal; Mario Molinaro; Antonio Musarò
Muscle regeneration following injury is characterized by myonecrosis accompanied by local inflammation, activation of satellite cells, and repair of injured fibers. The resolution of the inflammatory response is necessary to proceed toward muscle repair, since persistence of inflammation often renders the damaged muscle incapable of sustaining efficient muscle regeneration. Here, we show that local expression of a muscle‐restricted insulin‐like growth factor (IGF)‐1 (mIGF‐1) transgene accelerates the regenerative process of injured skeletal muscle, modulating the inflammatory response, and limiting fibrosis. At the molecular level, mIGF‐1 expression significantly down‐regulated proinflammatory cytokines, such as tumor necrosis factor (TNF)‐alpha and interleukin (IL)‐1beta, and modulated the expression of CC chemokines involved in the recruitment of monocytes/macrophages. Analysis of the underlying molecular mechanisms revealed that mIGF‐1 expression modulated key players of inflammatory response, such as macrophage migration inhibitory factor (MIF), high mobility group protein‐1 (HMGB1), and transcription NF‐KB. The rapid restoration of injured mIGF‐1 transgenic muscle was also associated with connective tissue remodeling and a rapid recovery of functional properties. By modulating the inflammatory response and reducing fibrosis, supplemental mIGF‐1 creates a qualitatively different environment for sustaining more efficient muscle regeneration and repair.—Pelosi, L., Giacinti, C., Nardis, C., Borsellino, G., Rizzuto, E., Nicoletti, C., Wannenes, F., Battistini, L., Rosenthal, N., Molinaro, M., Musaro, A. Local expression of IGF‐1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 21, 1393–1402 (2007)
BioMed Research International | 2014
Alessandra Costa; Angelica Toschi; Ivana Murfuni; Laura Pelosi; Gigliola Sica; Sergio Adamo; Bianca Maria Scicchitano
Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.
EBioMedicine | 2015
Laura Pelosi; Maria Grazia Berardinelli; Loredana De Pasquale; Carmine Nicoletti; Adele D'Amico; Francesco Carvello; Gian Marco Moneta; Angela Catizone; Enrico Bertini; Fabrizio De Benedetti; Antonio Musarò
The anti-inflammatory agents glucocorticoids (GC) are the only available treatment for Duchenne muscular dystrophy (DMD). However, long-term GC treatment causes muscle atrophy and wasting. Thus, targeting specific mediator of inflammatory response may be more specific, more efficacious, and with fewer side effects. The pro-inflammatory cytokine interleukin (IL) 6 is overproduced in patients with DMD and in the muscle of mdx, the animal model for human DMD. We tested the ability of inhibition of IL6 activity, using an interleukin-6 receptor (Il6r) neutralizing antibody, to ameliorate the dystrophic phenotype. Blockade of endogenous Il6r conferred on dystrophic muscle resistance to degeneration and alleviated both morphological and functional consequences of the primary genetic defect. Pharmacological inhibition of IL6 activity leaded to changes in the dystrophic muscle environment, favoring anti-inflammatory responses and improvement in muscle repair. This resulted in a functional homeostatic maintenance of dystrophic muscle. These data provide an alternative pharmacological strategy for treatment of DMD and circumvent the major problems associated with conventional therapy.
Neurological Research | 2011
Helmut Kern; Laura Pelosi; Luisa Coletto; Antonio Musarò; Marco Sandri; Michael Vogelauer; Lukas Trimmel; Jan Cvecka; Dušan Hamar; Josef Kovarik; Stefan Löfler; Nejc Sarabon; Feliciano Protasi; Nicoletta Adami; Donatella Biral; Sandra Zampieri; Ugo Carraro
Abstract Objective: To compare the effects of isokinetic (ISO-K) and vibrational-proprioceptive (VIB) trainings on muscle mass and strength. Methods: In 29 ISO-K- or VIB-trained young athletes we evaluated: force, muscle fiber morphometry, and gene expression of muscle atrophy/hypertrophy cell signaling. Results: VIB training increased the maximal isometric unilateral leg extension force by 48·1%. ISO-K training improved the force by 24·8%. Both improvements were statistically significant (P0·01). The more functional effectiveness of the VIB training in comparison with the ISO-K training was shown by the statistical significance changes only in VIB group in: rate of force development in time segment 0-50 ms (P<0·001), squat jump (P<0·05) and 30-m acceleration running test (P<0·05). VIB training induced a highly significant increase of mean diameter of fast fiber (+9%, P<0·001), but not of slow muscle fibers (−3%, not significant). No neural cell adhesion molecule-positive (N-CAM+) and embryonic myosin heavy chain-positive (MHC-emb+) myofibers were detected. VIB induced a significant twofold increase (P<0·05) of the skeletal muscle isoform insulin-like growth factor-1 (IGF-1) Ec mRNA. Atrogin-1 and muscle ring finger-1 (MuRF-1) did not change, but myostatin was strongly downregulated after VIB training (P<0·001). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression increased in post-training groups, but only in VIB reached statistical significance (+228%, P<0·05). Discussion: We demonstrated that both trainings are effective and do not induce muscle damage. Only VIB-trained group showed statistical significance increase of hypertrophy cell signaling pathways (IGF-1Ec and PGC-1α upregulation, and myostatin downregulation) leading to hypertrophy of fast twitch muscle fibers.
Human Molecular Genetics | 2015
Laura Pelosi; Maria Grazia Berardinelli; Laura Forcina; Elisa Spelta; Emanuele Rizzuto; Carmine Nicoletti; Carlotta Camilli; Erika Testa; Angela Catizone; Fabrizio De Benedetti; Antonio Musarò
Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.
European Journal of Histochemistry | 2007
Antonio Musarò; Cristina Giacinti; Laura Pelosi; Gabriella Dobrowolny; Laura Barberi; Chiara Nardis; Dario Coletti; Bianca Maria Scicchitano; Sergio Adamo; Mario Molinaro
One of the most exciting aspirations of current medical science is the regeneration of damaged body parts. The capacity of adult tissues to regenerate in response to injury stimuli represents an important homeostatic process that until recently was thought to be limited in mammals to tissues with high turnover such as blood and skin. However, it is now generally accepted that each tissue type, even those considered post-mitotic, such as nerve or muscle, contains a reserve of undifferentiated progenitor cells, loosely termed stem cells, participating in tissue regeneration and repair. Skeletal muscle regeneration is a coordinate process in which several factors are sequentially activated to maintain and preserve muscle structure and function upon injury stimuli. In this review, we will discuss the role of stem cells in muscle regeneration and repair and the critical role of specific factors, such as IGF-1, vasopressin and TNF-alpha, in the modulation of the myogenic program and in the regulation of muscle regeneration and homeostasis.Branching morphogenesis is a multi-step process that controls the formation of polarised tubules starting from hollow cysts. Its execution entails a series of rate-limiting events which include reversible disruption of cell polarity, dismantling of intercellular contacts, acquisition of a motile phenotype, stimulation of cell proliferation, and final re-establishment of cell polarity for creation of the definitive structures. Branching morphogenesis takes place physiologically during development, accounting for the establishment of organs endowed with a ramified architecture such as glands, the respiratory tract and the vasculartree. In cancer, aberrant implementation of branching morphogenesis leads to deregulated proliferation, protection from apoptosis and enhanced migratory/invasive properties, which together exacerbate the aggressive features of neoplastic cells. Under both physiological and pathological conditions, branching morphogenesis is mainly accomplished by a family of growth factors known as scatter factors. In this review, we will summarise the current knowledge on the biological and functional roles of scatter factors during branching morphogenesis, with a special emphasis on the phenotypic (structural and histological) consequences of scatter factor activity in different tissues.We present here findings obtained on a large number of human tissues over a period of more than ten years, by our modification of the Osmium maceration method for high resolution scanning electron microscopy (HRSEM). Data are documented by original pictures which illustrate both some 3-D intracellular features not previously shown in human tissues, and results obtained in our current studies on mitochondrial morphology and on the secretory process of salivary glands. We have demonstrated that mitochondria of cells of practically all human tissues and organs have usually tubular cristae, and that even the cristae that look lamellar are joined to the inner mitochondrial membrane by tubular connexions similar to the crista junctions later seen by electron tomography. Concerning salivary glands an important result is the development of a morphometric method that allows the quantitative evaluation of the secretory events.
Journal of Cell Biology | 2015
Vittoria Pagliarini; Laura Pelosi; Maria Blaire Bustamante; Annalisa Nobili; Maria Grazia Berardinelli; Marcello D’Amelio; Antonio Musarò; Claudio Sette
Knockout of the splicing factor SAM68 promotes SMN2 splicing, improving neuromuscular defects and viability in SMA mice.
Mechanisms of Ageing and Development | 2017
Bianca Maria Scicchitano; Laura Pelosi; Gigliola Sica; Antonio Musarò
Muscle senescence is a complex mechanism that is usually associated with a decrease in mass, strength and velocity of contraction. This state, known as sarcopenia, is a multifactorial process and it may be the consequence of several events, including accumulation of oxidative stress. The role of oxidative stress in the physiopathology of skeletal muscle is quite complex. Transiently increased levels of oxidative stress might reflect a potentially health promoting process, while an uncontrolled accumulation might have pathological implication. The physiopathological role of oxidative stress on skeletal muscle, its involvement in aging-induced sarcopenia, and potential countermeasures will be discussed.
Frontiers in Aging Neuroscience | 2015
Laura Pelosi; Angela Coggi; Laura Forcina; Antonio Musarò
Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle.
Human Molecular Genetics | 2017
Sara Petrillo; Laura Pelosi; Fiorella Piemonte; Lorena Travaglini; Laura Forcina; Michela Catteruccia; Stefania Petrini; Margherita Verardo; Adele D’Amico; Antonio Musarò; Enrico Bertini
Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NF-E2-related Factor 2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and Inteleukin-6 (IL-6), suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human.