Laura Busse
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Busse.
The Journal of Neuroscience | 2011
Steffen Katzner; Laura Busse; Matteo Carandini
GABAA inhibition is thought to play multiple roles in sensory cortex, such as controlling responsiveness and sensitivity, sharpening selectivity, and mediating competitive interactions. To test these proposals, we recorded in cat primary visual cortex (V1) after local iontophoresis of gabazine, the selective GABAA antagonist. Gabazine increased responsiveness by as much as 300%. It slightly decreased selectivity for stimulus orientation and direction, often by raising responses to all orientations. Strikingly, gabazine affected neither contrast sensitivity nor cross-orientation suppression, the competition seen when stimuli of different orientation are superimposed. These results were captured by a simple model in which GABAA inhibition has the same selectivity as excitation and keeps responses to unwanted stimuli below threshold. We conclude that GABAA inhibition in V1 helps enhance stimulus selectivity but is not responsible for competition among superimposed stimuli. It controls the sensitivity of V1 neurons by adjusting their response gain, without affecting their input gain.
Neuron | 2009
Laura Busse; Alex R. Wade; Matteo Carandini
How do neuronal populations represent concurrent stimuli? We measured population responses in cat primary visual cortex (V1) using electrode arrays. Population responses to two superimposed gratings were weighted sums of the individual grating responses. The weights depended strongly on the relative contrasts of the gratings. When the contrasts were similar, the population performed an approximately equal summation. When the contrasts differed markedly, however, the population performed approximately a winner-take-all competition. Stimuli that were intermediate to these extremes elicited intermediate responses. This entire range of behaviors was explained by a single model of contrast normalization. Normalization captured both the spike responses and the local field potential responses; it even predicted visually evoked currents source-localized to V1 in human subjects. Normalization has profound effects on V1 population responses and is likely to shape the interpretation of these responses by higher cortical areas.
The Journal of Neuroscience | 2011
Laura Busse; A Ayaz; Neel T. Dhruv; Steffen Katzner; Aman B Saleem; Marieke L. Schölvinck; Andrew D. Zaharia; Matteo Carandini
The mouse is becoming a key species for research on the neural circuits of the early visual system. To relate such circuits to perception, one must measure visually guided behavior and ask how it depends on fundamental stimulus attributes such as visual contrast. Using operant conditioning, we trained mice to detect visual contrast in a two-alternative forced-choice task. After 3–4 weeks of training, mice performed hundreds of trials in each session. Numerous sessions yielded high-quality psychometric curves from which we inferred measures of contrast sensitivity. In multiple sessions, however, choices were influenced not only by contrast, but also by estimates of reward value and by irrelevant factors such as recent failures and rewards. This behavior was captured by a generalized linear model involving not only the visual responses to the current stimulus but also a bias term and history terms depending on the outcome of the previous trial. We compared the behavioral performance of the mice to predictions of a simple decoder applied to neural responses measured in primary visual cortex of awake mice during passive viewing. The decoder performed better than the animal, suggesting that mice might not use optimally the information contained in the activity of visual cortex.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Laura Busse; Steffen Katzner; Stefan Treue
Dynamically shifting attention between behaviorally relevant stimuli in the environment is a key condition for successful adaptive behavior. Here, we investigated how exogenous (reflexive) and endogenous (voluntary) shifts of visual spatial attention interact to modulate activity of single neurons in extrastriate area MT. We used a double-cueing paradigm, in which the first cue instructed two macaque monkeys to covertly attend to one of three moving random dot patterns until a second cue, whose unpredictable onset exogenously captured attention, either signaled to shift or maintain the current focus of attention. The neuronal activity revealed correlates of both exogenous and endogenous attention, which could be well distinguished by their characteristic temporal dynamics. The earliest effect was a transient interruption of the focus of endogenous attention by the onset of the second cue. The neuronal signature of this exogenous capture of attention was a short-latency decrease of responses to the stimulus attended so far. About 70 ms later, the influence of exogenous attention leveled off, which was reflected in two concurrent processes: responses to the newly cued stimulus continuously increased because of allocation of endogenous attention, while, surprisingly, there was also a gradual rebound of attentional enhancement of the previously relevant stimulus. Only after an additional 110 ms did endogenous disengagement of attention from this previously relevant stimulus become evident. These patterns of attentional modulation can be most parsimoniously explained by assuming two distinct attentional mechanisms drawing on the same capacity-limited system, with exogenous attention having a much faster time course than endogenous attention.
Current Biology | 2014
Sinem Erisken; Agne Vaiceliunaite; Ovidiu Jurjut; Matilde Fiorini; Steffen Katzner; Laura Busse
BACKGROUND Neural responses in visual cortex depend not only on sensory input but also on behavioral context. One such context is locomotion, which modulates single-neuron activity in primary visual cortex (V1). How locomotion affects neuronal populations across cortical layers and in precortical structures is not well understood. RESULTS We performed extracellular multielectrode recordings in the visual system of mice during locomotion and stationary periods. We found that locomotion influenced activity of V1 neurons with a characteristic laminar profile and shaped the population response by reducing pairwise correlations. Although the reduction of pairwise correlations was restricted to cortex, locomotion slightly but consistently increased firing rates and controlled tuning selectivity already in the dorsolateral geniculate nucleus (dLGN) of the thalamus. At the level of the eye, increases in locomotion speed were associated with pupil dilation. CONCLUSIONS These findings document further, nonmultiplicative effects of locomotion, reaching earlier processing stages than cortex.
Journal of Neurophysiology | 2013
Agne Vaiceliunaite; Sinem Erisken; Florian Franzen; Steffen Katzner; Laura Busse
Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.
The Journal of Neuroscience | 2012
Ian Nauhaus; Laura Busse; Dario L. Ringach; Matteo Carandini
Numerous studies have revealed traveling waves of activity in sensory cortex, both following sensory stimulation and during ongoing activity. We contributed to this body of work by measuring the spike-triggered average of the local field potential (stLFP) at multiple concurrent locations (Nauhaus et al., 2009) in the visual cortex of anesthetized cats and macaques. We found the stLFP to be progressively delayed at increasing distances from the site of the triggering spikes, and interpreted this as a traveling wave of depolarization originating from that site. Our results were criticized, however, on two grounds. First, a study using the same recording techniques in the visual cortex of awake macaques reported an apparent lack of traveling waves, and proposed that traveling waves could arise artifactually from excessive filtering of the field potentials (Ray and Maunsell, 2011). Second, the interpretability of the stLFP was questioned (Kenneth Miller, personal communication), as the stLFP must reflect not only interactions between spike trains and field potentials, but also correlations within and across the spike trains. Here, we show that our data and interpretation are not imperiled by these criticisms. We reanalyzed our field potentials to remove any possible artifact due to filtering and to discount the effects of correlations within and across the triggering spike trains. In both cases, we found that the traveling waves were still present. In fact, closer inspection of Ray and Maunsells (2011) data from awake cortex shows that they do agree with ours, as they contain clear evidence for traveling waves.
Journal of Vision | 2012
Steffen Katzner; Stefan Treue; Laura Busse
One of the key features of active perception is the ability to predict critical sensory events. Humans and animals can implicitly learn statistical regularities in the timing of events and use them to improve behavioral performance. Here, we used a signal detection approach to investigate whether such improvements in performance result from changes of perceptual sensitivity or rather from adjustments of a response criterion. In a regular sequence of briefly presented stimuli, human observers performed a noise-limited motion detection task by monitoring the stimulus stream for the appearance of a designated target direction. We manipulated target predictability through the hazard rate, which specifies the likelihood that a target is about to occur, given it has not occurred so far. Analyses of response accuracy revealed that improvements in performance could be accounted for by adjustments of the response criterion; a growing hazard rate was paralleled by an increasing tendency to report the presence of a target. In contrast, the hazard rate did not affect perceptual sensitivity. Consistent with previous research, we also found that reaction time decreases as the hazard rate grows. A simple rise-to-threshold model could well describe this decrease and attribute predictability effects to threshold adjustments rather than changes in information supply. We conclude that, even under conditions of full attention and constant perceptual sensitivity, behavioral performance can be optimized by dynamically adjusting the response criterion to meet ongoing changes in the likelihood of a target.
Neuron | 2017
Aman B Saleem; Anthony D Lien; Michael Krumin; Bilal Haider; Miroslav Román Rosón; A Ayaz; Kimberley Reinhold; Laura Busse; Matteo Carandini; Kenneth D. M. Harris
Summary Primary visual cortex exhibits two types of gamma rhythm: broadband activity in the 30–90 Hz range and a narrowband oscillation seen in mice at frequencies close to 60 Hz. We investigated the sources of the narrowband gamma oscillation, the factors modulating its strength, and its relationship to broadband gamma activity. Narrowband and broadband gamma power were uncorrelated. Increasing visual contrast had opposite effects on the two rhythms: it increased broadband activity, but suppressed the narrowband oscillation. The narrowband oscillation was strongest in layer 4 and was mediated primarily by excitatory currents entrained by the synchronous, rhythmic firing of neurons in the lateral geniculate nucleus (LGN). The power and peak frequency of the narrowband gamma oscillation increased with light intensity. Silencing the cortex optogenetically did not abolish the narrowband oscillation in either LGN firing or cortical excitatory currents, suggesting that this oscillation reflects unidirectional flow of signals from thalamus to cortex.
The Journal of Neuroscience | 2017
Laura Busse; Jessica A. Cardin; M. Eugenia Chiappe; Michael M. Halassa; Matthew J. McGinley; Takayuki Yamashita; Aman B Saleem
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.