Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Calpe-Berdiel is active.

Publication


Featured researches published by Laura Calpe-Berdiel.


Atherosclerosis | 2009

New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism

Laura Calpe-Berdiel; Joan Carles Escolà-Gil; Francisco Blanco-Vaca

Plant sterols and stanols (phytosterols/phytostanols) are known to reduce serum low-density lipoprotein (LDL)-cholesterol level, and food products containing these plant compounds are widely used as a therapeutic dietary option to reduce plasma cholesterol and atherosclerotic risk. The cholesterol-lowering action of phytosterols/phytostanols is thought to occur, at least in part, through competition with dietary and biliary cholesterol for intestinal absorption in mixed micelles. However, recent evidence suggests that phytosterols/phytostanols may regulate proteins implicated in cholesterol metabolism both in enterocytes and hepatocytes. Important advances in the understanding of intestinal sterol absorption have provided potential molecular targets of phytosterols. An increased activity of ATP-binding cassette transporter A1 (ABCA1) and ABCG5/G8 heterodimer has been proposed as a mechanism underlying the hypocholesterolaemic effect of phytosterols. Conclusive studies using ABCA1 and ABCG5/G8-deficient mice have demonstrated that the phytosterol-mediated inhibition of intestinal cholesterol absorption is independent of these ATP-binding cassette (ABC) transporters. Other reports have proposed a phytosterol/phytostanol action on cholesterol esterification and lipoprotein assembly, cholesterol synthesis and apolipoprotein (apo) B100-containing lipoprotein removal. The accumulation of phytosterols in ABCG5/G8-deficient mice, which develop features of human sitosterolaemia, disrupts cholesterol homeostasis by affecting sterol regulatory element-binding protein (SREBP)-2 processing and liver X receptor (LXR) regulatory pathways. This article reviews the progress to date in studying these effects of phytosterols/phytostanols and the molecular mechanisms involved.


Circulation Research | 2010

Enhanced Foam Cell Formation, Atherosclerotic Lesion Development, and Inflammation by Combined Deletion of ABCA1 and SR-BI in Bone Marrow–Derived Cells in LDL Receptor Knockout Mice on Western-Type Diet

Ying Zhao; Marieke Pennings; Reeni B. Hildebrand; Dan Ye; Laura Calpe-Berdiel; Ruud Out; Martin Kjerrulf; Eva Hurt-Camejo; Albert K. Groen; Menno Hoekstra; Wendy Jessup; Giovanna Chimini; Theo J.C. van Berkel; Miranda Van Eck

Rationale: Macrophages cannot limit the uptake of lipids and rely on cholesterol efflux mechanisms for maintaining cellular cholesterol homeostasis. Important mediators of macrophage cholesterol efflux are ATP-binding cassette transporter 1 (ABCA1), which mediates the efflux of cholesterol to lipid-poor apolipoprotein AI, and scavenger receptor class B type I (SR-BI), which promotes efflux to mature high-density lipoprotein. Objective: The aim of the present study was to increase the insight into the putative synergistic roles of ABCA1 and SR-BI in foam cell formation and atherosclerosis. Methods and Results: Low-density lipoprotein receptor knockout (LDLr KO) mice were transplanted with bone marrow from ABCA1/SR-BI double knockout mice, the respective single knockouts, or wild-type littermates. Serum cholesterol levels were lower in ABCA1/SR-BI double knockout transplanted animals, as compared to the single knockout and wild-type transplanted animals on Western-type diet. Despite the lower serum cholesterol levels, massive foam cell formation was found in macrophages from spleen and the peritoneal cavity. Interestingly, ABCA1/SR-BI double knockout transplanted animals also showed a major increase in proinflammatory KC (murine interleukin-8) and interleukin-12p40 levels in the circulation. Furthermore, after 10 weeks of Western-type diet feeding, atherosclerotic lesion development in the aortic root was more extensive in the LDLr KO mice reconstituted with ABCA1/SR-BI double knockout bone marrow. Conclusions: Deletion of ABCA1 and SR-BI in bone marrow–derived cells enhances in vivo macrophage foam cell formation and atherosclerotic lesion development in LDLr KO mice on Western diet, indicating that under high dietary lipid conditions, both macrophage ABCA1 and SR-BI contribute significantly to cholesterol homeostasis in the macrophage in vivo and are essential for reducing the risk for atherosclerosis.


British Journal of Nutrition | 2006

Phytosterol-mediated inhibition of intestinal cholesterol absorption is independent of ATP-binding cassette transporter A1

Laura Calpe-Berdiel; Joan Carles Escolà-Gil; Francisco Blanco-Vaca

An increased activity of ATP-binding cassette transporter (ABC) A1 has been proposed as a mechanism underlying the hypocholesterolaemic effect of phytosterols. In the present study, ABCA1-deficient mice (ABCA1-/- mice) were used to examine the involvement of the ABCA1 in the reduction of intestinal cholesterol absorption in response to a phytosterol-enriched diet. A decrease in intestinal cholesterol absorption of 39 and 35 % was observed after phytosterol treatment in ABCA1+/+ mice and in ABCA1-/- mice, respectively. No statistically significant changes in plasma lipoprotein profile or in intestinal ABCG5, ABCG8 and Niemann-Pick C1-Like 1 gene expression levels were found when phytosterol-treated ABCA1-/- mice and untreated ABCA1-/- mice were compared. We conclude that phytosterol inhibition of cholesterol absorption in mice is independent of ABCA1.


Atherosclerosis | 2011

Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI

Ying Zhao; Marieke Pennings; Carlos L. J. Vrins; Laura Calpe-Berdiel; Menno Hoekstra; J. Kar Kruijt; Roelof Ottenhoff; Reeni B. Hildebrand; Ronald J. van der Sluis; Wendy Jessup; Wilfried Le Goff; M. John Chapman; Thierry Huby; Albert K. Groen; Theo J.C. van Berkel; Miranda Van Eck

High-density lipoprotein (HDL) mediated reverse cholesterol transport (RCT) is regarded to be crucial for prevention of foam cell formation and atherosclerosis. ABC-transporter A1 (ABCA1) and scavenger receptor BI (SR-BI) are involved in the biogenesis of HDL and the selective delivery of HDL cholesterol to the liver, respectively. In the present study, we phenotypically characterized mice lacking these two proteins essential for HDL metabolism. ABCA1×SR-BI double knockout (dKO) mice showed severe hypocholesterolemia mainly due to HDL loss, despite a 90% reduction of HDL cholesterol uptake by liver. VLDL production was increased in dKO mice. However, non-HDL cholesterol levels were reduced, probably due to enhanced clearance via LRP1. Hepatobiliary cholesterol transport and fecal sterol excretion were not impaired in dKO mice. In contrast, the macrophage RCT in dKO mice was markedly impaired as compared to WT mice, associated with the accumulation of macrophage foam cells in the lung and Peyers patches. Strikingly, no atherosclerotic lesion formation was observed in dKO mice. In conclusion, both ABCA1 and SR-BI are essential for maintaining a properly functioning HDL-mediated macrophage RCT, while the potential anti-atherosclerotic functions of ABCA1 and SR-BI are not evident in dKO mice due to the absence of pro-atherogenic lipoproteins.


PLOS ONE | 2012

Effects of Deletion of Macrophage ABCA7 on Lipid Metabolism and the Development of Atherosclerosis in the Presence and Absence of ABCA1

Illiana Meurs; Laura Calpe-Berdiel; Kim L.L. Habets; Ying Zhao; Suzanne J.A. Korporaal; A. Mieke Mommaas; Emmanuelle Josselin; Reeni B. Hildebrand; Dan Ye; Ruud Out; Johan Kuiper; Theo J.C. van Berkel; Giovanna Chimini; Miranda Van Eck

ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.


Biochimica et Biophysica Acta | 2011

Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo

Noemí Rotllan; Gemma Llaverias; Josep Julve; Matti Jauhiainen; Laura Calpe-Berdiel; Cristina Hernández; Rafael Simó; Francisco Blanco–Vaca; Joan Carles Escolà-Gil

Gemfibrozil and fenofibrate, two of the fibrates most used in clinical practice, raise HDL cholesterol (HDLc) and are thought to reduce the risk of atherosclerotic cardiovascular disease. These drugs act as PPARα agonists and upregulate the expression of genes crucial in reverse cholesterol transport (RCT). In the present study, we determined the effects of these two fibrates on RCT from macrophages to feces in vivo in human apoA-I transgenic (hApoA-ITg) mice. [(3)H]cholesterol-labeled mouse macrophages were injected intraperitoneally into hApoA-ITg mice treated with intragastric doses of fenofibrate, gemfibrozil or a vehicle solution for 17days, and radioactivity was determined in plasma, liver and feces. Fenofibrate, but not gemfibrozil, enhanced [(3)H]cholesterol flux to plasma and feces of female hApoA-ITg mice. Fenofibrate significantly increased plasma HDLc, HDL phospholipids, hApoA-I levels and phospholipid transfer protein activity, whereas these parameters were not altered by gemfibrozil treatment. Unlike gemfibrozil, fenofibrate also induced the generation of larger HDL particles, which were more enriched in cholesteryl esters, together with higher potential to generate preβ-HDL formation and caused a significant increase in [(3)H]cholesterol efflux to plasma. Our findings demonstrate that fenofibrate promotes RCT from macrophages to feces in vivo and, thus, highlight a differential action of this fibrate on HDL.


Biochemical and Biophysical Research Communications | 2010

Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

Dan Ye; Illiana Meurs; Megumi Ohigashi; Laura Calpe-Berdiel; Kim L.L. Habets; Ying Zhao; Yoshiyuki Kubo; Akihito Yamaguchi; Theo J.C. van Berkel; Tsuyoshi Nishi; Miranda Van Eck

OBJECTIVES To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. METHODS AND RESULTS Chimeras with dysfunctional macrophage ABCA5 (ABCA5(-M/-M)) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5(-/-)) mice into irradiated LDLr(-/-) mice. In vitro, bone marrow-derived macrophages from ABCA5(-M/-M) chimeras exhibited a 29% (P<0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P=0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr(-/-) mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5(-M/-M) chimeras after 6, 10, and 18weeks WTD feeding. However, female ABCA5(-M/-M) chimeras did develop significantly (P<0.05) larger aortic root lesions as compared with female controls after 6 and 10weeks WTD feeding. CONCLUSIONS ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr(-/-) mice.


British Journal of Nutrition | 2010

Disodium ascorbyl phytostanol phosphate (FM-VP4), a modified phytostanol, is a highly active hypocholesterolaemic agent that affects the enterohepatic circulation of both cholesterol and bile acids in mice

J. Méndez-González; S. Süren-Castillo; Laura Calpe-Berdiel; N. Rotllan; M. Vázquez-Carrera; Joan Carles Escolà-Gil; Francisco Blanco-Vaca

Disodium ascorbyl phytostanol phosphate (FM-VP4) is a synthetic compound derived from sitostanol and campestanol that has proved to be efficient as a cholesterol-lowering therapy in mice and human subjects. However, the mechanism of action of FM-VP4 remains unknown. The present study tests the ability of FM-VP4 to alter intestinal and liver cholesterol homeostasis in mice. Female C57BL/6J mice were fed either a control chow or a 2 % FM-VP4-enriched diet for 4 weeks. FM-VP4 reduced the in vivo net intestinal cholesterol absorption and plasma and liver cholesterol concentrations by 2.2-, 1.5- and 1.6-fold, respectively, compared with control mice. Furthermore, FM-VP4 also showed an impact on bile acid homeostasis. In FM-VP4 mice, liver and intestinal bile acid content was increased by 1.3- and 2.3-fold, respectively, whereas faecal bile acid output was 3.3-fold lower. FM-VP4 also increased the intestinal absorption of orally administered [3H]taurocholic acid to small intestine in vivo. Inhibition of intestinal cholesterol absorption by FM-VP4 was not mediated via transcriptional increases in intestine liver X receptor (LXR)-alpha, adenosine triphosphate-binding cassette transporter (ABC)-A1, ABCG5/G8 nor to decreases in intestinal Niemann-Pick C1-like 1 (NPC1L1) expression. In contrast, FM-VP4 up-regulated liver LXRalpha, ABCA1, ABCG5, scavenger receptor class BI (SR-BI) and hydroxymethylglutaryl coenzyme A reductase (HMGCoA-R) gene expression, whereas it down-regulated several farnesoid X receptor (FXR)-target genes such as cytochrome P450 family 7 subfamily A polypeptide 1 (CYP7A1) and Na+/taurocholate co-transporter polypeptide (NTCP). In conclusion, FM-VP4 reduced intestinal cholesterol absorption, plasma and liver cholesterol and affected bile acid homeostasis by inducing bile acid intestinal reabsorption and changed the liver expression of genes that play an essential role in cholesterol homeostasis. This is the first phytosterol or stanol that affects bile acid metabolism and lowers plasma cholesterol levels in normocholesterolaemic mice.


American Journal of Pathology | 2011

Stage-specific remodeling of atherosclerotic lesions upon cholesterol lowering in LDL receptor knockout mice.

Ying Zhao; Dan Ye; Jun Wang; Laura Calpe-Berdiel; Saaleha B.R.N. Azzis; Theo J.C. van Berkel; Miranda Van Eck

Reducing the concentration of circulating lipids leads to decreased cardiovascular morbidity and mortality, but the dynamic remodeling that established atherosclerotic lesions undergo upon lipid lowering is poorly understood. Early or advanced lesions in the aortic root were induced by feeding LDL receptor knockout mice a high-fat, high-cholesterol Western-type diet for 5 or 9 weeks, respectively. In the first week after switching to a chow diet, plasma total cholesterol levels dropped 70%, but both early and advanced lesions increased in size. Early lesions grew because of an increase in smooth muscle cells; advanced lesions had an enlargement of absolute macrophage area. From 1 to 3 weeks after the diet switch, plasma total cholesterol levels were completely normalized, but the size of early lesions remained stable; however, advanced lesions became smaller due to a reduction of the absolute macrophage area. From 3 to 6 weeks, both early and advanced lesions progressed further, as a result of expansion of the absolute collagen and necrotic core area. In contrast, early lesions became proinflammatory, as evidenced by the increased infiltration of neutrophils and increased oxidative stress, probably caused by the activation of mast cells in the adventitia. Thus, the severity of atherosclerotic lesions affects their dynamic response to lipid lowering, indicating the importance of establishing stage-specific therapeutic protocols for the treatment of atherosclerosis.


Biochemical Pharmacology | 2013

Elimination of macrophages drives LXR-induced regression both in initial and advanced stages of atherosclerotic lesion development.

Marco van der Stoep; Zhaosha Li; Laura Calpe-Berdiel; Ronald J. van der Sluis; Peshtiwan Saleh; Heather J. McKinnon; Martin J. Smit; Suzanne J.A. Korporaal; Theo J.C. van Berkel; Miranda Van Eck; Menno Hoekstra

While numerous studies have aimed to develop strategies to inhibit the development and progression of atherosclerosis, recent attention has focussed on the regression of pre-existing atherosclerotic plaques. As important regulator of total body cholesterol homeostasis, the liver X receptor (LXR) could possibly be an important target to induce regression. Here, we describe the effect of LXR activation by the synthetic agonist T0901317 on lesion regression in different mouse models with early fatty streak lesions or advanced collagen-rich lesions. Although T0901317 caused a dramatic increase in plasma (V)LDL levels in low-density lipoprotein (LDL) receptor knockout mice, no further increase in lesion size was observed, which points to beneficial LXR activity in the vascular wall. In normolipidemic C57BL/6 mice with cholate diet-induced atherosclerotic lesions, T0901317 treatment improved plasma lipoprotein levels and induced lesion regression (-43%, p<0.05). Apolipoprotein E (APOE) reconstitution in APOE knockout mice by means of bone marrow transplantation dramatically improved plasma lipoprotein profiles and resulted in a marked regression of initial (-45%, p<0.001) and advanced lesions (-23%, p<0.01). Atherosclerosis regression was associated with a decrease in the absolute macrophage content (-84%, p<0.001). T0901317 supplementation further decreased the size of early (-71%, p<0.001 vs baseline; -48%, p<0.01 vs chow diet alone) and more advanced atherosclerotic lesions (-36%, p<0.001 and -17%, p=0.06 respectively). In conclusion, our study highlights the potential of LXR agonist T0901317 to stimulate removal of macrophages from atherosclerotic lesions ultimately leading to a highly significant plaque regression of both early and advanced atherosclerotic lesions.

Collaboration


Dive into the Laura Calpe-Berdiel's collaboration.

Top Co-Authors

Avatar

Francisco Blanco-Vaca

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Joan Carles Escolà-Gil

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge