Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Cantone is active.

Publication


Featured researches published by Laura Cantone.


Environmental Health Perspectives | 2011

Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers.

Laura Cantone; Francesco Nordio; Lifang Hou; Pietro Apostoli; Matteo Bonzini; Letizia Tarantini; Laura Angelici; Valentina Bollati; Antonella Zanobetti; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic.


Environmental Health Perspectives | 2009

Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

Letizia Tarantini; Matteo Bonzini; Pietro Apostoli; Valeria Pegoraro; Valentina Bollati; Barbara Marinelli; Laura Cantone; Giovanna Rizzo; Lifang Hou; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.


International Journal of Epidemiology | 2012

Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis

Zhong Zheng Zhu; Lifang Hou; Valentina Bollati; Letizia Tarantini; Barbara Marinelli; Laura Cantone; Allen S. Yang; Pantel S. Vokonas; Jolanta Lissowska; Silvia Fustinoni; Angela Cecilia Pesatori; Matteo Bonzini; Pietro Apostoli; Giovanni Costa; Pier Alberto Bertazzi; Wong Ho Chow; Joel Schwartz; Andrea Baccarelli

BACKGROUND Estimates of global DNA methylation from repetitive DNA elements, such as Alu and LINE-1, have been increasingly used in epidemiological investigations because of their relative low-cost, high-throughput and quantitative results. Nevertheless, determinants of these methylation measures in healthy individuals are still largely unknown. The aim of this study was to examine whether age, gender, smoking habits, alcohol drinking and body mass index (BMI) are associated with Alu or LINE-1 methylation levels in blood leucocyte DNA of healthy individuals. METHODS Individual data from five studies including a total of 1465 healthy subjects were combined. DNA methylation was quantified by PCR-pyrosequencing. RESULTS Age [β = -0.011% of 5-methyl-cytosine (%5 mC)/year, 95% confidence interval (CI) -0.020 to -0.001%5 mC/year] and alcohol drinking (β = -0.214, 95% CI -0.415 to -0.013) were inversely associated with Alu methylation. Compared with females, males had lower Alu methylation (β = -0.385, 95% CI -0.665 to -0.104) and higher LINE-1 methylation (β = 0.796, 95% CI 0.261 to 1.330). No associations were found with smoking or BMI. Percent neutrophils and lymphocytes in blood counts exhibited a positive (β = 0.036, 95% CI 0.010 to 0.061) and negative (β = -0.038, 95% CI -0.065 to -0.012) association with LINE-1 methylation, respectively. CONCLUSIONS Global methylation measures in blood DNA vary in relation with certain host and lifestyle characteristics, including age, gender, alcohol drinking and white blood cell counts. These findings need to be considered in designing epidemiological investigations aimed at identifying associations between DNA methylation and health outcomes.


Environmental Health Perspectives | 2010

Exposure to Metal-Rich Particulate Matter Modifies the Expression of Candidate MicroRNAs in Peripheral Blood Leukocytes

Valentina Bollati; Barbara Marinelli; Pietro Apostoli; Matteo Bonzini; Francesco Nordio; Mirjam Hoxha; Valeria Pegoraro; Valeria Motta; Letizia Tarantini; Laura Cantone; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate the expression of broad gene networks at the posttranscriptional level. Objectives We evaluated the effects of exposure to PM and PM metal components on candidate miRNAs (miR-222, miR-21, and miR-146a) related with oxidative stress and inflammatory processes in 63 workers at an electric-furnace steel plant. Methods We measured miR-222, miR-21, and miR-146a expression in blood leukocyte RNA on the first day of a workweek (baseline) and after 3 days of work (postexposure). Relative expression of miRNAs was measured by real-time polymerase chain reaction. We measured blood oxidative stress (8-hydroxyguanine) and estimated individual exposures to PM1 (< 1 μm in aerodynamic diameter), PM10 (< 10 μm in aerodynamic diameter), coarse PM (PM10 minus PM1), and PM metal components (chromium, lead, cadmium, arsenic, nickel, manganese) between the baseline and postexposure measurements. Results Expression of miR-222 and miR-21 (using the 2−ΔΔCT method) was significantly increased in postexposure samples (miR-222: baseline = 0.68 ± 3.41, postexposure = 2.16 ± 2.25, p = 0.002; miR-21: baseline = 4.10 ± 3.04, postexposure = 4.66 ± 2.63, p = 0.05). In postexposure samples, miR-222 expression was positively correlated with lead exposure (β = 0.41, p = 0.02), whereas miR-21 expression was associated with blood 8-hydroxyguanine (β = 0.11, p = 0.03) but not with individual PM size fractions or metal components. Postexposure expression of miR-146a was not significantly different from baseline (baseline = 0.61 ± 2.42, postexposure = 1.90 ± 3.94, p = 0.19) but was negatively correlated with exposure to lead (β = −0.51, p = 0.011) and cadmium (β = −0.42, p = 0.04). Conclusions Changes in miRNA expression may represent a novel mechanism mediating responses to PM and its metal components.


EMBO Reports | 2015

Active endocannabinoids are secreted on extracellular membrane vesicles

Martina Gabrielli; Natalia Battista; Loredana Riganti; Ilaria Prada; Flavia Antonucci; Laura Cantone; Michela Matteoli; Mauro Maccarrone; Claudia Verderio

Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N‐arachidonoylethanolamine (AEA), which is able to stimulate type‐1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.


American Journal of Epidemiology | 2012

Air Pollution and DNA Methylation: Interaction by Psychological Factors in the VA Normative Aging Study

Jaime Madrigano; Andrea Baccarelli; Murray A. Mittleman; David Sparrow; Avron Spiro; Pantel S. Vokonas; Laura Cantone; Laura D. Kubzansky; Joel Schwartz

DNA methylation is a potential pathway linking air pollution to disease. Studies indicate that psychological functioning modifies the association between pollution and morbidity. The authors estimated the association of DNA methylation with ambient particulate matter less than 2.5 µm in diameter (PM(2.5)) and black carbon, using mixed models. DNA methylation of the inducible nitric oxide synthase gene, iNOS, and the glucocorticoid receptor gene, GCR, was measured by quantitative polymerase chain reaction pyrosequencing of 1,377 blood samples from 699 elderly male participants in the VA Normative Aging Study (1999-2009). The authors also investigated whether this association was modified by psychological factors including optimism or pessimism, anxiety, and depression. iNOS methylation was decreased after acute exposure to both black carbon and PM(2.5). A 1-μg/m(3) increase in exposure to black carbon in the 4 hours preceding the clinical examination was associated with a 0.9% decrease in 5-methylcytosine (95% CI: 0.4, 1.4) in iNOS, and a 10-μg/m(3) increase in exposure to PM(2.5) was associated with a 0.6% decrease in 5-methylcytosine (95% CI: 0.03, 1.1) in iNOS. Participants with low optimism and high anxiety had associations that were 3-4 times larger than those with high optimism or low anxiety. GCR methylation was not associated with particulate air pollution exposure.


Particle and Fibre Toxicology | 2011

Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study

Lifang Hou; Xiao Zhang; Letizia Tarantini; Francesco Nordio; Matteo Bonzini; Laura Angelici; Barbara Marinelli; Giovanna Rizzo; Laura Cantone; Pietro Apostoli; Pier Alberto Bertazzi; Andrea Baccarelli

Exposure to ambient air particles matter (PM) has been associated with increased risk of lung cancer. Aberrant tumor suppressor gene promoter methylation has emerged as a promising biomarker for cancers, including lung cancer. Whether exposure to PM is associated with peripheral blood leukocyte (PBL) DNA methylation in tumor suppressor genes has not been evaluated. In 63 male healthy steel workers with well-characterized exposure to metal-rich particles nearby Brescia, Italy, we evaluated whether exposure to PM and metal components was associated with PBL DNA methylation in 4 tumor suppressor genes (i.e., APC, p16, p53 and RASSF1A). Blood samples were obtained on the 1st (baseline) and 4th day (post-exposure) of the same work week and DNA methylation was measured using pyrosequencing. A linear mixed model was used to examine the correlations of the exposure with promoter methylation levels. Mean promoter DNA methylation levels of APC or p16 were significantly higher in post-exposure samples compared to that in baseline samples (p-values = 0.005 for APC, and p-value = 0.006 for p16). By contrast, the mean levels of p53 or RASSF1A promoter methylation was decreased in post-exposure samples compared to that in baseline samples (p-value = 0.015 for p53; and p-value < 0.001 for RASSF1A). In post-exposure samples, APC methylation was positively associated with PM10 (β = 0.27, 95% CI: 0.13-0.40), and PM1 (β = 0.23, 95% CI: 0.09-0.38). In summary, ambient PM exposure was associated with PBL DNA methylation levels of tumor suppressor genes of APC, p16, p53 and RASSF1A, suggesting that such methylation alterations may reflect processes related to PM-induced lung carcinogenesis.


Epigenomics | 2013

Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway

Tamar Sofer; Andrea Baccarelli; Laura Cantone; Brent A. Coull; Arnab Maity; Xihong Lin; Joel Schwartz

BACKGROUND Asthma exacerbation and other respiratory symptoms are associated with exposure to air pollution. Since environment affects gene methylation, it is hypothesized that asthmatic responses to pollution are mediated through methylation. MATERIALS & METHODS We study the possibility that airborne particulate matter affects gene methylation in the asthma pathway. We measured methylation array data in clinic visits of 141 subjects from the Normative Aging Study. Black carbon and sulfate measures from a central monitoring site were recorded and 30-day averages were calculated for each clinic visit. Gene-specific methylation scores were calculated for the genes in the asthma pathway, and the association between the methylation in the asthma pathway and the pollution measures was analyzed using sparse Canonical Correlation Analysis. RESULTS The analysis found that exposures to black carbon and sulfate were significantly associated with the methylation pattern in the asthma pathway (p-values 0.05 and 0.02, accordingly). Specific genes that contributed to this association were identified. CONCLUSION These results suggest that the effect of air pollution on asthmatic and respiratory responses may be mediated through gene methylation.


Journal of Applied Toxicology | 2015

Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells

Valentina Bollati; Laura Angelici; Giovanna Rizzo; Laura Pergoli; Federica Rota; Mirjam Hoxha; Francesco Nordio; Matteo Bonzini; Letizia Tarantini; Laura Cantone; Angela Cecilia Pesatori; Pietro Apostoli; Andrea Baccarelli; Pier Alberto Bertazzi

Cardiovascular disease risk has been consistently linked with particulate matter (PM) exposure. Cell‐derived microvesicles (MVs) are released into plasma and transfer microRNAs (miRNAs) between tissues. MVs can be produced by the respiratory system in response to proinflammatory triggers, enter the circulatory system and remotely modify gene expression in cardiovascular tissues. However, whether PM affects MV signaling has never been investigated. In this study, we evaluated expression of microRNAs contained within plasma MVs upon PM exposure both in vivo and in vitro. In the in vivo study, we isolated plasma MVs from healthy steel plant workers before and after workplace PM exposure. We measured the expression of 88 MV‐associated miRNAs by real‐time polymerase chain reaction. To assess a possible source of the MV miRNAs identified in vivo, we measured their miRNA expression in PM‐treated A549 pulmonary cell lines in vitro. MiRNA profiling of plasma MVs showed 5.62‐ and 13.95‐fold increased expression of miR‐128 and miR‐302c, respectively, after 3 days of workplace PM exposure (P < 0.001). According to Ingenuity Pathway Analysis, miR‐128 is part of coronary artery disease pathways, and miR‐302c is part of coronary artery disease, cardiac hypertrophy and heart failure pathways. In vitro experiments confirmed a dose‐dependent expression of miR‐128 in MVs released from A549 cells after 6 h of PM treatment (P = 0.030). MiR‐302c was expressed neither from A549 cells nor in reference lung RNA. These results suggest novel PM‐activated molecular mechanisms that may mediate the effects of air pollution and could lead to the identification of new diagnostic and therapeutic interventions. Copyright


Clinical Cancer Research | 2016

TNF-Related Apoptosis-Inducing Ligand (TRAIL)–Armed Exosomes Deliver Proapoptotic Signals to Tumor Site

Licia Rivoltini; Claudia Chiodoni; Paola Squarcina; Monica Tortoreto; Antonello Villa; Barbara Vergani; Maja Bürdek; Laura Botti; Ivano Arioli; Agata Cova; Giorgio Mauri; Elisabetta Vergani; Beatrice Bianchi; Pamela Della Mina; Laura Cantone; Valentina Bollati; Nadia Zaffaroni; Alessandro M. Gianni; Mario P. Colombo; Veronica Huber

Purpose: Exosomes deliver signals to target cells and could thus be exploited as an innovative therapeutic tool. We investigated the ability of membrane TRAIL-armed exosomes to deliver proapoptotic signals to cancer cells and mediate growth inhibition in different tumor models. Experimental Methods and Results: K562 cells, transduced with lentiviral human membrane TRAIL, were used for the production of TRAIL+ exosomes, which were studied by nanoparticle tracking analysis, cytofluorimetry, immunoelectronmicroscopy, Western blot, and ELISA. In vitro, TRAIL+ exosomes induced more pronounced apoptosis (detected by Annexin V/propidium iodide and activated caspase-3) in TRAIL-death receptor (DR)5+ cells (SUDHL4 lymphoma and INT12 melanoma), with respect to the DR5−DR4+KMS11 multiple myeloma. Intratumor injection of TRAIL+ exosomes, but not mock exosomes, induced growth inhibition of SUDHL4 (68%) and INT12 (51%), and necrosis in KMS11 tumors. After rapid blood clearance, systemically administered TRAIL+ exosomes accumulated in the liver, lungs, and spleen and homed to the tumor site, leading to a significant reduction of tumor growth (58%) in SUDHL4-bearing mice. The treatment of INT12-bearing animals promoted tumor necrosis and a not statistically significant tumor volume reduction. In KMS11-bearing mice, despite massive perivascular necrosis, no significant tumor growth inhibition was detected. Conclusions: TRAIL-armed exosomes can induce apoptosis in cancer cells and control tumor progression in vivo. Therapeutic efficacy was particularly evident in intratumor setting, while depended on tumor model upon systemic administration. Thanks to their ability to deliver multiple signals, exosomes thus represent a promising therapeutic tool in cancer. Clin Cancer Res; 22(14); 3499–512. ©2016 AACR.

Collaboration


Dive into the Laura Cantone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Angelici

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge