Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Bonzini is active.

Publication


Featured researches published by Matteo Bonzini.


Environmental Health Perspectives | 2011

Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers.

Laura Cantone; Francesco Nordio; Lifang Hou; Pietro Apostoli; Matteo Bonzini; Letizia Tarantini; Laura Angelici; Valentina Bollati; Antonella Zanobetti; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic.


Cancer Research | 2007

Changes in DNA Methylation Patterns in Subjects Exposed to Low-Dose Benzene

Valentina Bollati; Andrea Baccarelli; Lifang Hou; Matteo Bonzini; Silvia Fustinoni; Domenico Cavallo; Hyang-Min Byun; Jiayi Jiang; Barbara Marinelli; Angela Cecilia Pesatori; Pier Alberto Bertazzi; Allen S. Yang

Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.


Environmental Health Perspectives | 2009

Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

Letizia Tarantini; Matteo Bonzini; Pietro Apostoli; Valeria Pegoraro; Valentina Bollati; Barbara Marinelli; Laura Cantone; Giovanna Rizzo; Lifang Hou; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.


Environmental Health Perspectives | 2013

Maternal exposure to particulate air pollution and term birth weight : a multi-country evaluation of effect and heterogeneity

Payam Dadvand; Jennifer D. Parker; Michelle L. Bell; Matteo Bonzini; Michael Brauer; Lyndsey A. Darrow; Ulrike Gehring; Svetlana V. Glinianaia; Nelson Gouveia; Eun Hee Ha; Jong Han Leem; Edith H. van den Hooven; Bin Jalaludin; Bill M. Jesdale; Johanna Lepeule; Rachel Morello-Frosch; Geoffrey Morgan; Angela Cecilia Pesatori; Frank H. Pierik; Tanja Pless-Mulloli; David Q. Rich; Sheela Sathyanarayana; Ju-Hee Seo; Rémy Slama; Matthew J. Strickland; Lillian Tamburic; Daniel Wartenberg; Mark J. Nieuwenhuijsen; Tracey J. Woodruff

Background: A growing body of evidence has associated maternal exposure to air pollution with adverse effects on fetal growth; however, the existing literature is inconsistent. Objectives: We aimed to quantify the association between maternal exposure to particulate air pollution and term birth weight and low birth weight (LBW) across 14 centers from 9 countries, and to explore the influence of site characteristics and exposure assessment methods on between-center heterogeneity in this association. Methods: Using a common analytical protocol, International Collaboration on Air Pollution and Pregnancy Outcomes (ICAPPO) centers generated effect estimates for term LBW and continuous birth weight associated with PM10 and PM2.5 (particulate matter ≤ 10 and 2.5 µm). We used meta-analysis to combine the estimates of effect across centers (~ 3 million births) and used meta-regression to evaluate the influence of center characteristics and exposure assessment methods on between-center heterogeneity in reported effect estimates. Results: In random-effects meta-analyses, term LBW was positively associated with a 10-μg/m3 increase in PM10 [odds ratio (OR) = 1.03; 95% CI: 1.01, 1.05] and PM2.5 (OR = 1.10; 95% CI: 1.03, 1.18) exposure during the entire pregnancy, adjusted for maternal socioeconomic status. A 10-μg/m3 increase in PM10 exposure was also negatively associated with term birth weight as a continuous outcome in the fully adjusted random-effects meta-analyses (–8.9 g; 95% CI: –13.2, –4.6 g). Meta-regressions revealed that centers with higher median PM2.5 levels and PM2.5:PM10 ratios, and centers that used a temporal exposure assessment (compared with spatiotemporal), tended to report stronger associations. Conclusion: Maternal exposure to particulate pollution was associated with LBW at term across study populations. We detected three site characteristics and aspects of exposure assessment methodology that appeared to contribute to the variation in associations reported by centers.


International Journal of Epidemiology | 2012

Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis

Zhong Zheng Zhu; Lifang Hou; Valentina Bollati; Letizia Tarantini; Barbara Marinelli; Laura Cantone; Allen S. Yang; Pantel S. Vokonas; Jolanta Lissowska; Silvia Fustinoni; Angela Cecilia Pesatori; Matteo Bonzini; Pietro Apostoli; Giovanni Costa; Pier Alberto Bertazzi; Wong Ho Chow; Joel Schwartz; Andrea Baccarelli

BACKGROUND Estimates of global DNA methylation from repetitive DNA elements, such as Alu and LINE-1, have been increasingly used in epidemiological investigations because of their relative low-cost, high-throughput and quantitative results. Nevertheless, determinants of these methylation measures in healthy individuals are still largely unknown. The aim of this study was to examine whether age, gender, smoking habits, alcohol drinking and body mass index (BMI) are associated with Alu or LINE-1 methylation levels in blood leucocyte DNA of healthy individuals. METHODS Individual data from five studies including a total of 1465 healthy subjects were combined. DNA methylation was quantified by PCR-pyrosequencing. RESULTS Age [β = -0.011% of 5-methyl-cytosine (%5 mC)/year, 95% confidence interval (CI) -0.020 to -0.001%5 mC/year] and alcohol drinking (β = -0.214, 95% CI -0.415 to -0.013) were inversely associated with Alu methylation. Compared with females, males had lower Alu methylation (β = -0.385, 95% CI -0.665 to -0.104) and higher LINE-1 methylation (β = 0.796, 95% CI 0.261 to 1.330). No associations were found with smoking or BMI. Percent neutrophils and lymphocytes in blood counts exhibited a positive (β = 0.036, 95% CI 0.010 to 0.061) and negative (β = -0.038, 95% CI -0.065 to -0.012) association with LINE-1 methylation, respectively. CONCLUSIONS Global methylation measures in blood DNA vary in relation with certain host and lifestyle characteristics, including age, gender, alcohol drinking and white blood cell counts. These findings need to be considered in designing epidemiological investigations aimed at identifying associations between DNA methylation and health outcomes.


Environmental Health Perspectives | 2010

Exposure to Metal-Rich Particulate Matter Modifies the Expression of Candidate MicroRNAs in Peripheral Blood Leukocytes

Valentina Bollati; Barbara Marinelli; Pietro Apostoli; Matteo Bonzini; Francesco Nordio; Mirjam Hoxha; Valeria Pegoraro; Valeria Motta; Letizia Tarantini; Laura Cantone; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate the expression of broad gene networks at the posttranscriptional level. Objectives We evaluated the effects of exposure to PM and PM metal components on candidate miRNAs (miR-222, miR-21, and miR-146a) related with oxidative stress and inflammatory processes in 63 workers at an electric-furnace steel plant. Methods We measured miR-222, miR-21, and miR-146a expression in blood leukocyte RNA on the first day of a workweek (baseline) and after 3 days of work (postexposure). Relative expression of miRNAs was measured by real-time polymerase chain reaction. We measured blood oxidative stress (8-hydroxyguanine) and estimated individual exposures to PM1 (< 1 μm in aerodynamic diameter), PM10 (< 10 μm in aerodynamic diameter), coarse PM (PM10 minus PM1), and PM metal components (chromium, lead, cadmium, arsenic, nickel, manganese) between the baseline and postexposure measurements. Results Expression of miR-222 and miR-21 (using the 2−ΔΔCT method) was significantly increased in postexposure samples (miR-222: baseline = 0.68 ± 3.41, postexposure = 2.16 ± 2.25, p = 0.002; miR-21: baseline = 4.10 ± 3.04, postexposure = 4.66 ± 2.63, p = 0.05). In postexposure samples, miR-222 expression was positively correlated with lead exposure (β = 0.41, p = 0.02), whereas miR-21 expression was associated with blood 8-hydroxyguanine (β = 0.11, p = 0.03) but not with individual PM size fractions or metal components. Postexposure expression of miR-146a was not significantly different from baseline (baseline = 0.61 ± 2.42, postexposure = 1.90 ± 3.94, p = 0.19) but was negatively correlated with exposure to lead (β = −0.51, p = 0.011) and cadmium (β = −0.42, p = 0.04). Conclusions Changes in miRNA expression may represent a novel mechanism mediating responses to PM and its metal components.


Occupational and Environmental Medicine | 2006

Risk of prematurity, low birthweight and pre‐eclampsia in relation to working hours and physical activities: a systematic review

Matteo Bonzini; David Coggon; Keith T Palmer

Background: Occupational activities are suspected of having an adverse impact on outcomes of pregnancy. Aim: To assess the evidence relating three major adverse outcomes (preterm delivery, low birthweight (LBW) and pre-eclampsia/gestational hypertension) to five common occupational exposures (prolonged working hours, shift work, lifting, standing and heavy physical workload). Methods: A systematic search of Medline and Embase (1966–December 2005) using combinations of keywords and medical subject heading terms was conducted. For each relevant paper, standard details were abstracted that were then used to summarise the design features of studies, to rate their methodological quality (completeness of reporting and potential for important bias or confounding) and to provide estimates of effect. For studies with similar definitions of exposure and outcome, pooled estimates of relative risk (RR) in meta-analysis were calculated. Results: 53 reports were identified—35 on preterm delivery, 34 on birth weight and 9 on pre-eclampsia or gestational hypertension. These included 21 cohort investigations. For pre-term delivery, extensive evidence relating to each of the exposures of interest was found. Findings were generally consistent and tended to rule out a more than moderate effect size (RR >1.4). The larger and most complete studies were less positive, and pooled estimates of risk pointed to only modest or null effects. For small-for-gestational age, the position was similar, but the evidence base was more limited. For pre-eclampsia and gestational hypertension, it was too small to allow firm conclusions. Conclusions: The balance of evidence is not sufficiently compelling to justify mandatory restrictions on any of the activities considered in this review. However, given some uncertainties in the evidence base and the apparent absence of important beneficial effects, it may be prudent to advise against long working hours, prolonged standing and heavy physical work, particularly late in pregnancy. Our review identifies several priorities for future investigation.


Journal of Thrombosis and Haemostasis | 2007

Effects of exposure to air pollution on blood coagulation

Andrea Baccarelli; Antonella Zanobetti; Ida Martinelli; Paolo Grillo; Lifang Hou; Sara M. Giacomini; Matteo Bonzini; G. Lanzani; P. M. Mannucci; Pier Alberto Bertazzi; Joel Schwartz

Summary.  Background: Consistent evidence has indicated that air pollution increases the risk of cardiovascular diseases. The underlying mechanisms linking air pollutants to increased cardiovascular risk are unclear. Objectives: We investigated the association between the pollution levels and changes in such global coagulation tests as the prothrombin time (PT) and the activated partial thromboplastin time (APTT) in 1218 normal subjects from the Lombardia Region, Italy. Plasma fibrinogen and naturally occurring anticoagulant proteins were also evaluated. Methods: Hourly concentrations of particulate (PM10) and gaseous pollutants (CO, NO2, SO2, and O3) were obtained from 53 monitoring sites covering the study area. Generalized additive models were applied to compute standardized regression coefficients controlled for age, gender, body mass index, smoking, alcohol, hormone use, temperature, day of the year, and long‐term trends. Results: The PT became shorter with higher ambient air concentrations at the time of the study of PM10 (coefficient = −0.06; P < 0.05), CO (coefficient = −0.11; P < 0.001) and NO2 (coefficient =−0.06; P < 0.05). In the 30 days before blood sampling, the PT was also negatively associated with the average PM10 (coefficient = −0.08; P < 0.05) and NO2 (coefficient = −0.08; P < 0.05). No association was found between the APTT and air pollutant levels. In addition, no consistent relations with air pollution were found for fibrinogen, antithrombin, protein C and protein S. Conclusions: This investigation shows that air pollution is associated with changes in the global coagulation function, suggesting a tendency towards hypercoagulability after short‐term exposure to air pollution. Whether these changes contribute to trigger cardiovascular events remains to be established.


Cancer Epidemiology, Biomarkers & Prevention | 2005

Monitoring low benzene exposure : comparative evaluation of urinary biomarkers, influence of cigarette smoking and genetic polymorphisms

Silvia Fustinoni; Dario Consonni; Laura Campo; Marina Buratti; Antonio Colombi; Angela C. Pesatori; Matteo Bonzini; Pier Alberto Bertazzi; Vito Foà; Seymour Garte; Peter B. Farmer; Leonard S. Levy; Mauro Pala; Federico Valerio; Vincenzo Fontana; Arianna Desideri; Domenico Franco Merlo

Benzene is a human carcinogen and an ubiquitous environmental pollutant. Identification of specific and sensitive biological markers is critical for the definition of exposure to low benzene level and the evaluation of the health risk posed by this exposure. This investigation compared urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid, and benzene (U-benzene) as biomarkers to assess benzene exposure and evaluated the influence of smoking and the genetic polymorphisms CYP2E1 (RsaI and DraI) and NADPH quinone oxidoreductase-1 on these indices. Gas station attendants, urban policemen, bus drivers, and two groups of controls were studied (415 subjects). Median benzene exposure was 61, 22, 21, 9 and 6 μg/m3, respectively, with higher levels in workers than in controls. U-benzene, but not t,t-MA and S-phenylmercapturic acid, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to 8-fold higher in smokers compared with nonsmokers. Significant correlations of the biomarkers with each other and with urinary cotinine were found. A possible influence of genetic polymorphism of CYP2E1 (RsaI and/or DraI) on t,t-MA and U-benzene in subjects with a variant allele was found. Multiple linear regression analysis correlated the urinary markers with exposure, smoking status, and CYP2E1 (RsaI; R2 up to 0.55 for U-benzene). In conclusion, in the range of investigated benzene levels (<478 μg/m3 or <0.15 ppm), smoking may be regarded as the major source of benzene intake; among the study indices, U-benzene is the marker of choice for biomonitoring low-level occupational and environmental benzene exposure.


Environmental Health | 2009

Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers

Mirjam Hoxha; Laura Dioni; Matteo Bonzini; Angela Cecilia Pesatori; Silvia Fustinoni; Domenico Cavallo; Michele Carugno; Benedetta Albetti; Barbara Marinelli; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

BackgroundTelomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated.MethodsWe measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95% Confidence Intervals (CIs).ResultsAdjusted mean LTL was 1.10 (95%CI 1.04-1.16) in traffic officers and 1.27 in referents (95%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008).ConclusionOur results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk.

Collaboration


Dive into the Matteo Bonzini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lifang Hou

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge