Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura D. Attardi is active.

Publication


Featured researches published by Laura D. Attardi.


Nature Reviews Cancer | 2005

The role of apoptosis in cancer development and treatment response.

J. Martin Brown; Laura D. Attardi

The inactivation of programmed cell death, or apoptosis, is central to the development of cancer. This disabling of apoptotic responses might be a major contributor both to treatment resistance and to the observation that, in many tumours, apoptosis is not the main mechanism for the death of cancer cells in response to common treatment regimens. Importantly, this suggests that other modes of cell death are involved in the response to therapy.


Nature Reviews Cancer | 2014

Unravelling mechanisms of p53-mediated tumour suppression

Kathryn T. Bieging; Stephano Spano Mello; Laura D. Attardi

p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.


Cell | 2011

Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression

Colleen A. Brady; Dadi Jiang; Stephano Spano Mello; Thomas M. Johnson; Lesley A. Jarvis; Margaret M. Kozak; Daniela Kenzelmann Broz; Shashwati Basak; Eunice J. Park; Margaret McLaughlin; Anthony N. Karnezis; Laura D. Attardi

The molecular basis for p53-mediated tumor suppression remains unclear. Here, to elucidate mechanisms of p53 tumor suppression, we use knockin mice expressing an allelic series of p53 transcriptional activation mutants. Microarray analysis reveals that one mutant, p53(25,26), is severely compromised for transactivation of most p53 target genes, and, moreover, p53(25,26) cannot induce G(1)-arrest or apoptosis in response to acute DNA damage. Surprisingly, p53(25,26) retains robust activity in senescence and tumor suppression, indicating that efficient transactivation of the majority of known p53 targets is dispensable for these pathways. In contrast, the transactivation-dead p53(25,26,53,54) mutant cannot induce senescence or inhibit tumorigenesis, like p53 nullizygosity. Thus, p53 transactivation is essential for tumor suppression but, intriguingly, in association with a small set of novel p53 target genes. Together, our studies distinguish the p53 transcriptional programs involved in acute DNA-damage responses and tumor suppression-a critical goal for designing therapeutics that block p53-dependent side effects of chemotherapy without compromising p53 tumor suppression.


Nature Genetics | 2008

Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects

Kelly A. McGowan; Jun Li; Christopher Y. Park; Veronica G. Beaudry; Holly K. Tabor; Amit J. Sabnis; Weibin Zhang; Helmut Fuchs; Martin Hrabé de Angelis; Richard M. Myers; Laura D. Attardi; Gregory S. Barsh

Mutations in genes encoding ribosomal proteins cause the Minute phenotype in Drosophila and mice, and Diamond-Blackfan syndrome in humans. Here we report two mouse dark skin (Dsk) loci caused by mutations in Rps19 (ribosomal protein S19) and Rps20 (ribosomal protein S20). We identify a common pathophysiologic program in which p53 stabilization stimulates Kit ligand expression, and, consequently, epidermal melanocytosis via a paracrine mechanism. Accumulation of p53 also causes reduced body size and erythrocyte count. These results provide a mechanistic explanation for the diverse collection of phenotypes that accompany reduced dosage of genes encoding ribosomal proteins, and have implications for understanding normal human variation and human disease.


Cell | 2005

Perp is a p63-regulated gene essential for epithelial integrity

Rebecca A. Ihrie; Michelle R. Marques; Bichchau Nguyen; Jennifer S. Horner; Cristian Papazoglu; Roderick T. Bronson; Alea A. Mills; Laura D. Attardi

p63 is a master regulator of stratified epithelial development that is both necessary and sufficient for specifying this multifaceted program. We show here that Perp, a tetraspan membrane protein originally identified as an apoptosis-associated target of the p53 tumor suppressor, is the first direct target of p63 clearly involved in mediating this developmental program in vivo. During embryogenesis, Perp is expressed in an epithelial pattern, and its expression depends on p63. Perp-/- mice die postnatally, with dramatic blistering in stratified epithelia symptomatic of compromised adhesion. Perp localizes specifically to desmosomes, adhesion junctions important for tissue integrity, and numerous structural defects in desmosomes are observed in Perp-deficient skin, suggesting a role for Perp in promoting the stable assembly of desmosomal adhesive complexes. These findings demonstrate that Perp is a key effector in the p63 developmental program, playing an essential role in an adhesion subprogram central to epithelial integrity and homeostasis.


The EMBO Journal | 1996

Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis.

Laura D. Attardi; Scott W. Lowe; James Brugarolas; Tyler Jacks

The p53 tumor suppressor limits cellular proliferation by inducing either G1 arrest or apoptosis, depending on the cellular context. To determine if these pathways are mechanistically distinct, we have examined the effects of different p53 mutants in p53 null primary mouse embryo fibroblasts. We chose this system as it is highly physiological and ensures that the interpretation of the results will not be confounded by the presence of endogenous p53 or oncoproteins which target p53. Using single cell microinjection assays for both G1 arrest and apoptosis, with loss‐of‐function and chimeric gain‐of‐function mutants, we have demonstrated that transcriptional activation is critical for both processes. Replacement of the p53 activation domain with that of VP16, or replacement of the p53 oligomerization domain with that of GCN4, reconstituted both G1 arrest and apoptosis activities. However, despite the importance of transcriptional activation in both processes, the target gene requirements are different. The p21 cyclin‐dependent kinase inhibitor, which has been shown to be a direct target of p53 and a component of the radiation‐induced G1 arrest response, is dispensable for oncogene‐induced apoptosis, suggesting that these two p53‐dependent transcriptional pathways are distinct.


Journal of Cell Science | 2010

p53 at a glance.

Colleen A. Brady; Laura D. Attardi

Since its discovery in 1979, the role of the p53 protein in cancer has been studied intensively ([Levine and Oren, 2009][1]). p53 is a crucial tumor suppressor, long-recognized to suppress cancer through the induction of cell-cycle-arrest or apoptosis programs in response to a plethora of different


Cellular and Molecular Life Sciences | 1999

The role of p53 in tumour suppression: lessons from mouse models.

Laura D. Attardi; Tyler Jacks

Abstract. The use of mouse models has greatly contributed to our understanding of the role of p53 in tumour suppression. Mice homozygous for a deletion in the p53 gene develop tumours at high frequency, providing essential evidence for the importance of p53 as a tumour suppressor. Additionally, crossing these knockout mice or transgenic expression p53 dominant negative alleles with other tumour-prone mouse strains has allowed the effect of p53 loss on tumour development to be examined further. In a variety of mouse models, absence of p53 facilitates tumorigenesis, thus providing a means to study how the lack of p53 enhances tumour development and to define genetic pathways of p53 action. Depending on the particular model system, loss of p53 either results in deregulated cell-cylce entry or aberrant apoptosis (programmed cell death), confirming results found in cell culture systems and providing insight into in vitro function of p53. Finally, as p53 null mice rapidly develop tumours, they are useful for evaluating agents for either chemopreventative or therapeutic activities.


Genes & Development | 2013

Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses

Daniela Kenzelmann Broz; Stephano Spano Mello; Kathryn T. Bieging; Dadi Jiang; Rachel L. Dusek; Colleen A. Brady; Arend Sidow; Laura D. Attardi

The mechanisms by which the p53 tumor suppressor acts remain incompletely understood. To gain new insights into p53 biology, we used high-throughput sequencing to analyze global p53 transcriptional networks in primary mouse embryo fibroblasts in response to DNA damage. Chromatin immunoprecipitation sequencing reveals 4785 p53-bound sites in the genome located near 3193 genes involved in diverse biological processes. RNA sequencing analysis shows that only a subset of p53-bound genes is transcriptionally regulated, yielding a list of 432 p53-bound and regulated genes. Interestingly, we identify a host of autophagy genes as direct p53 target genes. While the autophagy program is regulated predominantly by p53, the p53 family members p63 and p73 contribute to activation of this autophagy gene network. Induction of autophagy genes in response to p53 activation is associated with enhanced autophagy in diverse settings and depends on p53 transcriptional activity. While p53-induced autophagy does not affect cell cycle arrest in response to DNA damage, it is important for both robust p53-dependent apoptosis triggered by DNA damage and transformation suppression by p53. Together, our data highlight an intimate connection between p53 and autophagy through a vast transcriptional network and indicate that autophagy contributes to p53-dependent apoptosis and cancer suppression.


Nature Medicine | 2014

Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

Xingnan Li; Lincoln D. Nadauld; Akifumi Ootani; David C Corney; Reetesh K. Pai; Olivier Gevaert; Michael Cantrell; Paul G. Rack; James T. Neal; Carol W.M. Chan; Trevor M. Yeung; Xue Gong; Jenny Yuan; Julie Wilhelmy; Sylvie Robine; Laura D. Attardi; Sylvia K. Plevritis; Kenneth E Hung; Chang-Zheng Chen; Hanlee P. Ji; Calvin J. Kuo

The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (KrasG12D), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

Collaboration


Dive into the Laura D. Attardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyler Jacks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge