Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Jacks is active.

Publication


Featured researches published by Tyler Jacks.


Nature | 2005

MicroRNA expression profiles classify human cancers.

Jun Lu; Gad Getz; Eric A. Miska; Ezequiel Alvarez-Saavedra; Justin Lamb; David Peck; Alejandro Sweet-Cordero; Benjamin L. Ebert; Raymond H. Mak; Adolfo A. Ferrando; James R. Downing; Tyler Jacks; H. Robert Horvitz; Todd R. Golub

Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.


Cell | 1992

A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia

Michael B. Kastan; Qimin Zhan; Wafik S. El-Deiry; Tyler Jacks; William V. Walsh; Beverly Plunkett; Bert Vogelstein; Albert J. Fornace

Cell cycle checkpoints can enhance cell survival and limit mutagenic events following DNA damage. Primary murine fibroblasts became deficient in a G1 checkpoint activated by ionizing radiation (IR) when both wild-type p53 alleles were disrupted. In addition, cells from patients with the radiosensitive, cancer-prone disease ataxia-telangiectasia (AT) lacked the IR-induced increase in p53 protein levels seen in normal cells. Finally, IR induction of the human GADD45 gene, an induction that is also defective in AT cells, was dependent on wild-type p53 function. Wild-type but not mutant p53 bound strongly to a conserved element in the GADD45 gene, and a p53-containing nuclear factor, which bound this element, was detected in extracts from irradiated cells. Thus, we identified three participants (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.


Cell | 1993

p53-dependent apoptosis modulates the cytotoxicity of anticancer agents

Scott W. Lowe; H. Earl Ruley; Tyler Jacks; David E. Housman

Although the primary cellular targets of many anticancer agents have been identified, less is known about the processes leading to the selective cell death of cancer cells or the molecular basis of drug resistance. p53-deficient mouse embryonic fibroblasts were used to examine systematically the requirement for p53 in cellular sensitivity and resistance to a diverse group of anticancer agents. These results demonstrate that an oncogene, specifically the adenovirus E1A gene, can sensitize fibroblasts to apoptosis induced by ionizing radiation, 5-fluorouracil, etoposide, and adriamycin. Furthermore, the p53 tumor suppressor is required for efficient execution of the death program. These data reinforce the notion that the cytotoxic action of many anticancer agents involves processes subsequent to the interaction between drug and cellular target and indicate that divergent stimuli can activate a common cell death program. Consequently, the involvement of p53 in the apoptotic response suggests a mechanism whereby tumor cells can acquire cross-resistance to anticancer agents.


Nature | 2009

Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals

Mitchell Guttman; Ido Amit; Manuel Garber; Courtney French; Michael F. Lin; David M. Feldser; Maite Huarte; Or Zuk; Bryce W. Carey; John P. Cassady; Moran N. Cabili; Rudolf Jaenisch; Tarjei S. Mikkelsen; Tyler Jacks; Nir Hacohen; Bradley E. Bernstein; Manolis Kellis; Aviv Regev; John L. Rinn; Eric S. Lander

There is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. Although there are some well-characterized examples, most (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here we report a new approach to identifying large non-coding RNAs using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified ∼1,600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening non-coding RNAs (lincRNAs) show strong purifying selection in their genomic loci, exonic sequences and promoter regions, with greater than 95% showing clear evolutionary conservation. We also developed a functional genomics approach that assigns putative functions to each lincRNA, demonstrating a diverse range of roles for lincRNAs in processes from embryonic stem cell pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFκB, Sox2, Oct4 (also known as Pou5f1) and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.


Current Biology | 1994

Tumor spectrum analysis in p53-mutant mice

Tyler Jacks; Lee Remington; Bart O. Williams; Earlene M. Schmitt; Schlomit Halachmi; Roderick T. Bronson; Robert A. Weinberg

BACKGROUND The p53 tumor suppressor gene is mutated in a large percentage of human malignancies, including tumors of the colon, breast, lung and brain. Individuals who inherit one mutant allele of p53 are susceptible to a wide range of tumor types. The gene encodes a transcriptional regulator that may function in the cellular response to DNA damage. The construction of mouse strains carrying germline mutations of p53 facilitates analysis of the function of p53 in normal cells and tumorigenesis. RESULTS In order to study the effects of p53 mutation in vivo, we have constructed a mouse strain carrying a germline disruption of the gene. This mutation removes approximately 40% of the coding capacity of p53 and completely eliminates synthesis of p53 protein. As observed previously for a different germline mutation of p53, animals homozygous for this p53 deletion mutation are viable but highly predisposed to malignancy. Heterozygous animals also have an increased cancer risk, although the distribution of tumor types in these animals differs from that in homozygous mutants. In most cases, tumorigenesis in heterozygous animals is accompanied by loss of the wild-type p53 allele. CONCLUSION We reaffirm that p53 function is not required for normal mouse development and conclude that p53 status can strongly influence tumor latency and tissue distribution.


Cell | 2005

Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer

Carla F. Kim; Erica L. Jackson; Amber Woolfenden; Sharon Lawrence; Imran Babar; Sinae Vogel; Denise Crowley; Roderick T. Bronson; Tyler Jacks

Injury models have suggested that the lung contains anatomically and functionally distinct epithelial stem cell populations. We have isolated such a regional pulmonary stem cell population, termed bronchioalveolar stem cells (BASCs). Identified at the bronchioalveolar duct junction, BASCs were resistant to bronchiolar and alveolar damage and proliferated during epithelial cell renewal in vivo. BASCs exhibited self-renewal and were multipotent in clonal assays, highlighting their stem cell properties. Furthermore, BASCs expanded in response to oncogenic K-ras in culture and in precursors of lung tumors in vivo. These data support the hypothesis that BASCs are a stem cell population that maintains the bronchiolar Clara cells and alveolar cells of the distal lung and that their transformed counterparts give rise to adenocarcinoma. Although bronchiolar cells and alveolar cells are proposed to be the precursor cells of adenocarcinoma, this work points to BASCs as the putative cells of origin for this subtype of lung cancer.


Cancer Cell | 2003

Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse

Sunil R. Hingorani; Emanuel F. Petricoin; Anirban Maitra; Vinodh N. Rajapakse; Catrina King; Michael A. Jacobetz; Sally Ross; Thomas P. Conrads; Timothey D. Veenstra; Ben A. Hitt; Yoshiya Kawaguchi; Don Johann; Lance A. Liotta; Howard C. Crawford; Mary E. Putt; Tyler Jacks; Christopher V.E. Wright; Ralph H. Hruban; Andrew M. Lowy; David A. Tuveson

To evaluate the role of oncogenic RAS mutations in pancreatic tumorigenesis, we directed endogenous expression of KRAS(G12D) to progenitor cells of the mouse pancreas. We find that physiological levels of Kras(G12D) induce ductal lesions that recapitulate the full spectrum of human pancreatic intraepithelial neoplasias (PanINs), putative precursors to invasive pancreatic cancer. The PanINs are highly proliferative, show evidence of histological progression, and activate signaling pathways normally quiescent in ductal epithelium, suggesting potential therapeutic and chemopreventive targets for the cognate human condition. At low frequency, these lesions also progress spontaneously to invasive and metastatic adenocarcinomas, establishing PanINs as definitive precursors to the invasive disease. Finally, mice with PanINs have an identifiable serum proteomic signature, suggesting a means of detecting the preinvasive state in patients.


Cell | 1992

Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53

Laura R. Livingstone; Alicia White; Jason Sprouse; Elizabeth Livanos; Tyler Jacks; Thea D. Tlsty

Gene amplification occurs at high frequency in transformed cells (10(-3)-10(-5)), but is undetectable in normal diploid fibroblasts (less than 10(-9)). This study examines whether alterations of one or both p53 alleles were sufficient to allow gene amplification to occur. Cells retaining one wild-type p53 allele mimicked the behavior of primary diploid cells: they arrested growth in the presence of drug and failed to demonstrate amplification. Cells losing the second p53 allele failed to arrest when placed in drug and displayed the ability to amplify at a high frequency. Thus, loss of wild-type p53 may lead to amplification, possibly caused by changes in cell cycle progression. Other determinants can by-pass this p53 function, however, since tumor cells with wild-type p53 have the ability to amplify genes.


Cell | 2008

Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters

Andrea Ventura; Amanda G. Young; Monte M. Winslow; Laura Lintault; Alexander Meissner; Stefan J. Erkeland; Jamie J. Newman; Roderick T. Bronson; Denise Crowley; James R. Stone; Rudolf Jaenisch; Phillip A. Sharp; Tyler Jacks

miR-17 approximately 92, miR-106b approximately 25, and miR-106a approximately 363 belong to a family of highly conserved miRNA clusters. Amplification and overexpression of miR-1792 is observed in human cancers, and its oncogenic properties have been confirmed in a mouse model of B cell lymphoma. Here we show that mice deficient for miR-17 approximately 92 die shortly after birth with lung hypoplasia and a ventricular septal defect. The miR-17 approximately 92 cluster is also essential for B cell development. Absence of miR-17 approximately 92 leads to increased levels of the proapoptotic protein Bim and inhibits B cell development at the pro-B to pre-B transition. Furthermore, while ablation of miR-106b approximately 25 or miR-106a approximately 363 has no obvious phenotypic consequences, compound mutant embryos lacking both miR-106b approximately 25 and miR-17 approximately 92 die at midgestation. These results provide key insights into the physiologic functions of this family of microRNAs and suggest a link between the oncogenic properties of miR-17 approximately 92 and its functions during B lymphopoiesis and lung development.


Nature | 2007

Restoration of p53 function leads to tumour regression in vivo

Andrea Ventura; David G. Kirsch; Margaret McLaughlin; David A. Tuveson; Jan Grimm; Laura Lintault; Jamie J. Newman; Elizabeth E. Reczek; Ralph Weissleder; Tyler Jacks

Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.

Collaboration


Dive into the Tyler Jacks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Bhutkar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Denise Crowley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Xue

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

David A. Tuveson

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

David M. Feldser

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Sánchez-Rivera

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge