Laura de Lorenzo
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura de Lorenzo.
Gut | 2011
Isabel Comino; Ana Real; Laura de Lorenzo; Hugh J. Cornell; Miguel Ángel López-Casado; Francisco Barro; Pedro Lorite; M.I. Torres; Angel Cebolla; Carolina Sousa
Background and aims Coeliac disease (CD) is triggered by an abnormal reaction to gluten. Peptides resulting from partially digested gluten of wheat, barley or rye cause inflammation of the small intestinal mucosa. Previous contradictory studies suggest that oats may trigger the abnormal immunological response in patients with CD. Monoclonal antibodies (moAbs) against the main immunotoxic 33-mer peptide (A1 and G12) react strongly against wheat, barley and rye but have less reactivity against oats. The stated aim of this study is to test whether this observed reactivity could be related to the potential toxicity of oats for patients with CD. Methods In the present study, different oat varieties, controlled for their purity and by their distinct protein pattern, were used to examine differences in moAb G12 recognition by ELISA and western blot. Immunogenicity of oat varieties was determined by 33-mer concentration, T cell proliferation and interferon γ production. Results Three groups of oat cultivars reacting differently against moAb G12 could be distinguished: a group with considerable affinity, a group showing slight reactivity and a third with no detectable reactivity. The immunogenicity of the three types of oats as well as that of a positive and negative control was determined with isolated peripheral blood mononuclear T cells from patients with CD by measurement of cell proliferation and interferon γ release. A direct correlation of the reactivity with G12 and the immunogenicity of the different prolamins was observed. Conclusions The results showed that the reactivity of the moAb G12 is proportional to the potential immunotoxicity of the cereal cultivar. These differences may explain the different clinical responses observed in patients suffering from CD and open up a means to identify immunologically safe oat cultivars, which could be used to enrich a gluten-free diet.
The Plant Cell | 2009
Laura de Lorenzo; Francisco Merchan; Philippe Laporte; Richard Thompson; Jonathan Clarke; Carolina Sousa; Martin Crespi
In plants, a diverse group of cell surface receptor-like protein kinases (RLKs) plays a fundamental role in sensing external signals to regulate gene expression. Roots explore the soil environment to optimize their growth via complex signaling cascades, mainly analyzed in Arabidopsis thaliana. However, legume roots have significant physiological differences, notably their capacity to establish symbiotic interactions. These major agricultural crops are affected by environmental stresses such as salinity. Here, we report the identification of a leucine-rich repeat RLK gene, Srlk, from the legume Medicago truncatula. Srlk is rapidly induced by salt stress in roots, and RNA interference (RNAi) assays specifically targeting Srlk yielded transgenic roots whose growth was less inhibited by the presence of salt in the medium. Promoter-β-glucuronidase fusions indicate that this gene is expressed in epidermal root tissues in response to salt stress. Two Srlk-TILLING mutants also failed to limit root growth in response to salt stress and accumulated fewer sodium ions than controls. Furthermore, early salt-regulated genes are downregulated in Srlk-RNAi roots and in the TILLING mutant lines when submitted to salt stress. We propose a role for Srlk in the regulation of the adaptation of M. truncatula roots to salt stress.
Proceedings of the National Academy of Sciences of the United States of America | 2014
María Isabel Puga; Isabel Mateos; Rajulu Charukesi; Zhiye Wang; José Manuel Franco-Zorrilla; Laura de Lorenzo; María Luisa Irigoyen; Simona Masiero; Regla Bustos; José A. Rodriguez; Antonio Leyva; Vicente Rubio; Hans Sommer; Javier Paz-Ares
Significance When P levels are low, plants activate an array of adaptive responses to increase efficient acquisition and use of phosphate (Pi), the form in which P is preferentially absorbed, and to protect themselves from Pi starvation stress. Considerable progress has been made recently in dissecting the plant Pi starvation signaling pathway. Nonetheless, little is known as to how Pi levels are perceived by plants. Here, we identify the nuclear protein SPX1 as a Pi-dependent inhibitor of DNA binding by PHOSPHATE STARVATION RESPONSE 1 (PHR1), a master regulator of Pi starvation responses. We show that the Pi dependence of SPX1 inhibition of PHR1 activity can be recreated in vitro using purified proteins, which indicates that the SPX1/PHR1 module links Pi sensing and signaling. To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. PHOSPHATE STARVATION RESPONSE 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis, SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.
Nature plants | 2015
Eva Maria Willing; Vimal Rawat; Terezie Mandáková; Florian Maumus; Geo Velikkakam James; Karl Nordström; Claude Becker; Norman Warthmann; Claudia Chica; Bogna Szarzynska; Matthias Zytnicki; Maria C. Albani; Christiane Kiefer; Sara Bergonzi; Loren Castaings; Julieta L. Mateos; Markus C. Berns; Nora Bujdoso; Thomas Piofczyk; Laura de Lorenzo; Cristina Barrero-Sicilia; Isabel Mateos; Mathieu Piednoël; Jörg Hagmann; Romy Chen-Min-Tao; Raquel Iglesias-Fernández; Stephan C. Schuster; Carlos Alonso-Blanco; François Roudier; Pilar Carbonero
Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.
The Plant Cell | 2013
Gabriel Castrillo; Eduardo Sánchez-Bermejo; Laura de Lorenzo; Pedro Crevillén; Ana Fraile-Escanciano; Mohan Tc; Alfonso Mouriz; Pablo Catarecha; Juan Sobrino-Plata; Sanna Olsson; Yolanda Leo del Puerto; Isabel Mateos; Enrique Rojo; Luis E. Hernández; José A. Jarillo; Manuel Piñeiro; Javier Paz-Ares; Antonio Leyva
This work shows that plants respond to arsenate by immediately freezing its uptake through the action of a transcriptional repressor of phosphate transporters and that the same transcription factor influences transposon expression in response to arsenate. Plants therefore have an arsenate perception mechanism that controls arsenate uptake and transposon expression, providing an integrated strategy for arsenate tolerance and genome stability. Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here, we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.
Molecular Plant | 2012
Ons Zahaf; Sandrine Blanchet; Axel de Zélicourt; Benoı̂t Alunni; Julie Plet; Carole Laffont; Laura de Lorenzo; Sandrine Imbeaud; Jean-Laurent Ichanté; Anouck Diet; Mounawer Badri; Ana Zabalza; Esther M. González; Hervé Delacroix; Véronique Gruber; Florian Frugier; Martin Crespi
Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.
Plant Physiology | 2007
Laura de Lorenzo; Francisco Merchan; Sandrine Blanchet; Manuel Megías; Florian Frugier; Martin Crespi; Carolina Sousa
Soil salinity is one of the most significant abiotic stresses for crop plants, including legumes. These plants can establish root symbioses with nitrogen-fixing soil bacteria and are able to grow in nitrogen-poor soils. Medicago truncatula varieties show diverse adaptive responses to environmental conditions, such as saline soils. We have compared the differential root growth of two genotypes of M. truncatula (108-R and Jemalong A17) in response to salt stress. Jemalong A17 is more tolerant to salt stress than 108-R, regarding both root and nodulation responses independently of the nitrogen status of the media. A dedicated macroarray containing 384 genes linked to stress responses was used to compare root gene expression during salt stress in these genotypes. Several genes potentially associated with the contrasting cellular responses of these plants to salt stress were identified as expressed in the more tolerant genotype even in the absence of stress. Among them, a homolog of the abiotic stress-related COLD-REGULATEDA1 gene and a TFIIIA-related transcription factor (TF), MtZpt2-1, known to regulate the former gene. Two MtZpt2 TFs (MtZpt2-1 and MtZpt2-2) were found in Jemalong A17 plants and showed increased expression in roots when compared to 108-R. Overexpression of these TFs in the sensitive genotype 108-R, but not in Jemalong A17, led to increased root growth under salt stress, suggesting a role for this pathway in the adaptive response to salt stress of these M. truncatula genotypes.
PLOS ONE | 2012
Ana Real; Isabel Comino; Laura de Lorenzo; Francisco Merchan; Javier Gil-Humanes; María J. Giménez; Miguel Ángel López-Casado; M.I. Torres; Angel Cebolla; Carolina Sousa; Francisco Barro; Fernando Pistón
A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease (CD). Traditionally, treatment with a GFD has excluded wheat, barley and rye, while the presence of oats is a subject of debate. The most-recent research indicates that some cultivars of oats can be a safe part of a GFD. In order to elucidate the toxicity of the prolamins from oat varieties with low, medium, and high CD toxicity, the avenin genes of these varieties were cloned and sequenced, and their expression quantified throughout the grain development. At the protein level, we have accomplished an exhaustive characterization and quantification of avenins by RP-HPLC and an analysis of immunogenicity of peptides present in prolamins of different oat cultivars. Avenin sequences were classified into three different groups, which have homology with S-rich prolamins of Triticeae. Avenin proteins presented a lower proline content than that of wheat gliadin; this may contribute to the low toxicity shown by oat avenins. The expression of avenin genes throughout the development stages has shown a pattern similar to that of prolamins of wheat and barley. RP-HPLC chromatograms showed protein peaks in the alcohol-soluble and reduced-soluble fractions. Therefore, oat grains had both monomeric and polymeric avenins, termed in this paper gliadin- and glutenin-like avenins. We found a direct correlation between the immunogenicity of the different oat varieties and the presence of the specific peptides with a higher/lower potential immunotoxicity. The specific peptides from the oat variety with the highest toxicity have shown a higher potential immunotoxicity. These results suggest that there is wide range of variation of potential immunotoxicity of oat cultivars that could be due to differences in the degree of immunogenicity in their sequences.
Molecular Nutrition & Food Research | 2012
Isabel Comino; Ana Real; Javier Gil-Humanes; Fernando Pistón; Laura de Lorenzo; Mª de Lourdes Moreno; Miguel Ángel López-Casado; Pedro Lorite; Angel Cebolla; M.I. Torres; Francisco Barro; Carolina Sousa
SCOPE The only treatment available for coeliac disease (CD) is a strict diet in which the intake of wheat, barley, rye, or oats is avoided. Barley is a major cereal crop, grown mainly for its use in brewing, and it has high nutritional value. The identification of varieties with a reduced toxicity profile may contribute to improve the diet, the quality of life and health of CD patients. METHODS AND RESULTS Searching for harmless barleys, we investigated accessions of malting and wild barley, used for developing new cultivated cereals. The CD toxicity profile of barleys was screened using G12 antibody and cell proliferation and IFN-γ release from peripheral blood mononuclear cells and intestinal biopsies from CD patients. We found a direct correlation between the reactivity with G12 and the immunogenicity of the different barleys. CONCLUSION The malting barleys were less immunogenic, with reduced levels of toxic gluten, and were possibly less harmful to CD patients. Our findings could raise the prospect of breeding barley species with low levels of harmful gluten, and the attractive goal of developing nontoxic barley cultivars, always taking into account the Codex standard for foods for special dietary use for persons intolerant to gluten.
Archive | 2011
Véronique Gruber; Ons Zahaf; Anouck Diet; Axel de Zélicourt; Laura de Lorenzo; Martin Crespi
Root architecture plays an important role in water and nutrient acquisition and in the ability of the plant to adapt to the soil. Lateral root growth and development is the main determinant of the shape of the root system, a trait controlled by internal cues and external factors. In this chapter, we discuss the impact of abiotic stresses, mainly drought and salt, on the action and number of root meristems to determine root architecture. In addition to Arabidopsis, we discuss recent results on model legumes able to interact symbiotically with soil rhizobia to form new meristems leading to the nitrogen-fixing nodule. The molecular mechanisms regulating lateral root initiation and emergence as well as root nodule formation in legumes allow plants to coordinate root growth with the soil environment.