Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura K.M. Steinbusch is active.

Publication


Featured researches published by Laura K.M. Steinbusch.


Cellular and Molecular Life Sciences | 2011

Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes.

Laura K.M. Steinbusch; Robert W. Schwenk; D. Margriet Ouwens; Michaela Diamant; Jan F. C. Glatz; Joost J. F. P. Luiken

Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.


Biochemical Journal | 2012

CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes.

Yeliz Angin; Laura K.M. Steinbusch; Peter J. Simons; Sabrina Greulich; Nicole Hoebers; Kim Douma; Marc A. M. J. van Zandvoort; Will A. Coumans; Wino Wijnen; Michaela Diamant; D. Margriet Ouwens; Jan F.C. Glatz; Joost J. F. P. Luiken

An increased cardiac fatty acid supply and increased sarcolemmal presence of the long-chain fatty acid transporter CD36 are associated with and contribute to impaired cardiac insulin sensitivity and function. In the present study we aimed at preventing the development of insulin resistance and contractile dysfunction in cardiomyocytes by blocking CD36-mediated palmitate uptake. Insulin resistance and contractile dysfunction were induced in primary cardiomyocytes by 48 h incubation in media containing either 100 nM insulin (high insulin; HI) or 200 μM palmitate (high palmitate; HP). Under both culture conditions, insulin-stimulated glucose uptake and Akt phosphorylation were abrogated or markedly reduced. Furthermore, cardiomyocytes cultured in each medium displayed elevated sarcolemmal CD36 content, increased basal palmitate uptake, lipid accumulation and decreased sarcomere shortening. Immunochemical CD36 inhibition enhanced basal glucose uptake and prevented elevated basal palmitate uptake, triacylglycerol accumulation and contractile dysfunction in cardiomyocytes cultured in either medium. Additionally, CD36 inhibition prevented loss of insulin signalling in cells cultured in HP, but not in HI medium. In conclusion, CD36 inhibition prevents lipid accumulation and lipid-induced contractile dysfunction in cardiomyocytes, but probably independently of effects on insulin signalling. Nonetheless, pharmacological CD36 inhibition may be considered as a treatment strategy to counteract impaired functioning of the lipid-loaded heart.


American Journal of Physiology-endocrinology and Metabolism | 2011

Absence of fatty acid transporter CD36 protects against Western-type diet-related cardiac dysfunction following pressure overload in mice

Laura K.M. Steinbusch; Joost J. F. P. Luiken; Ronald Vlasblom; Adrian Chabowski; Nicole Hoebers; Will A. Coumans; Irene O.C.M. Vroegrijk; Peter J. Voshol; D. Margriet Ouwens; Jan F. C. Glatz; Michaela Diamant

Cardiac patients often are obese and have hypertension, but in most studies these conditions are investigated separately. Here, we aimed at 1) elucidating the interaction of metabolic and mechanophysical stress in the development of cardiac dysfunction in mice and 2) preventing this interaction by ablation of the fatty acid transporter CD36. Male wild-type (WT) C57Bl/6 mice and CD36(-/-) mice received chow or Western-type diet (WTD) for 10 wk and then underwent a sham surgery or transverse aortic constriction (TAC) under anesthesia. After a 6-wk continuation of the diet, cardiac function, morphology, lipid profiles, and molecular parameters were assessed. WTD administration affected body and organ weights of WT and CD36(-/-) mice, but it affected only plasma glucose and insulin concentrations in WT mice. Cardiac lipid concentrations increased in WT mice receiving WTD, decreased in CD36(-/-) on chow, and remained unchanged in CD36(-/-) receiving WTD. TAC induced cardiac hypertrophy in WT mice on chow but did not affect cardiac function and cardiac lipid concentrations. WTD or CD36 ablation worsened the outcome of TAC. Ablation of CD36 protected against the WTD-related aggravation of cardiac functional and structural changes induced by TAC. In conclusion, cardiac dysfunction and remodeling worsen when the heart is exposed to two stresses, metabolic and mechanophysical, at the same time. CD36 ablation prevents the metabolic stress resulting from a WTD. Thus, metabolic conditions are a critical factor for the compromised heart and provide new targets for metabolic manipulation in cardioprotection.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2013

CD36 as a target to prevent cardiac lipotoxicity and insulin resistance

Jan F.C. Glatz; Yeliz Angin; Laura K.M. Steinbusch; Robert W. Schwenk; Joost J. F. P. Luiken

The fatty acid transporter and scavenger receptor CD36 is increasingly being implicated in the pathogenesis of insulin resistance and its progression towards type 2 diabetes and associated cardiovascular complications. The redistribution of CD36 from intracellular stores to the plasma membrane is one of the earliest changes occurring in the heart during diet induced obesity and insulin resistance. This elicits an increased rate of fatty acid uptake and enhanced incorporation into triacylglycerol stores and lipid intermediates to subsequently interfere with insulin-induced GLUT4 recruitment (i.e., insulin resistance). In the present paper we discuss the potential of CD36 to serve as a target to rectify abnormal myocardial fatty acid uptake rates in cardiac lipotoxic diseases. Two approaches are described: (i) immunochemical inhibition of CD36 present at the sarcolemma and (ii) interference with the subcellular recycling of CD36. Using in vitro model systems of high-fat diet induced insulin resistance, the results indicate the feasibility of using CD36 as a target for adaptation of cardiac metabolic substrate utilization. In conclusion, CD36 deserves further attention as a promising therapeutic target to redirect fatty acid fluxes in the body.


Obesity | 2013

CD36 is important for adipocyte recruitment and affects lipolysis

Irene O.C.M. Vroegrijk; Jan B. van Klinken; Janna A. van Diepen; Sjoerd A. A. van den Berg; Maria Febbraio; Laura K.M. Steinbusch; Jan F.C. Glatz; Louis M. Havekes; Peter J. Voshol; Patrick C. N. Rensen; Ko Willems van Dijk; Vanessa van Harmelen

Objective: The scavenger receptor CD36 facilitates the cellular uptake of long‐chain fatty acids. As CD36‐deficiency attenuates the development of high fat diet (HFD)‐induced obesity, the role of CD36‐deficiency in preadipocyte recruitment and adipocyte function was set out to characterize.


Journal of Biological Chemistry | 2012

Overexpression of Vesicle-associated Membrane Protein (VAMP) 3, but Not VAMP2, Protects Glucose Transporter (GLUT) 4 Protein Translocation in an in Vitro Model of Cardiac Insulin Resistance

Robert W. Schwenk; Yeliz Angin; Laura K.M. Steinbusch; Ellen Dirkx; Nicole Hoebers; Will A. Coumans; Arend Bonen; Jos L. V. Broers; Guillaume van Eys; Jan F.C. Glatz; Joost J. F. P. Luiken

Background: GLUT4 translocation in cardiomyocytes is impaired during insulin resistance leading to insufficient glucose supply and eventually heart failure. Results: Cardiomyocytes overexpressing VAMP3 maintain full insulin-stimulated GLUT4 translocation and do not accumulate intramyocellular lipids. Conclusion: Overexpression of VAMP3 protects cardiac glucose metabolism under conditions of impaired insulin sensitivity. Significance: These data indicate a mechanism how contraction signaling improves insulin-dependent GLUT4 translocation. Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.


American Journal of Physiology-cell Physiology | 2010

Differential regulation of cardiac glucose and fatty acid uptake by endosomal pH and actin filaments

Laura K.M. Steinbusch; Wino Wijnen; Robert W. Schwenk; Will A. Coumans; Nicole Hoebers; D. Margriet Ouwens; Michaela Diamant; Arend Bonen; Jan F. C. Glatz; Joost J. F. P. Luiken

Insulin and contraction stimulate both cardiac glucose and long-chain fatty acid (LCFA) uptake via translocation of the substrate transporters GLUT4 and CD36, respectively, from intracellular compartments to the sarcolemma. Little is known about the role of vesicular trafficking elements in insulin- and contraction-stimulated glucose and LCFA uptake in the heart, especially whether certain trafficking elements are specifically involved in GLUT4 versus CD36 translocation. Therefore, we studied the role of coat proteins, actin- and microtubule-filaments and endosomal pH on glucose and LCFA uptake into primary cardiomyocytes under basal conditions and during stimulation with insulin or oligomycin (contraction-like AMP-activated protein kinase activator). Inhibition of coat protein targeting to Golgi/endosomes decreased insulin/oligomycin-stimulated glucose (-42%/-51%) and LCFA (-39%/-68%) uptake. Actin disruption decreased insulin/oligomycin-stimulated glucose uptake (-41%/-75%), while not affecting LCFA uptake. Microtubule disruption did not affect substrate uptake under any condition. Endosomal alkalinization increased basal sarcolemmal CD36 (2-fold), but not GLUT4, content, and concomitantly decreased basal intracellular membrane GLUT4 and CD36 content (-60% and -62%, respectively), indicating successful CD36 translocation and incomplete GLUT4 translocation. Additionally, endosomal alkalinization elevated basal LCFA uptake (1.4-fold) in a nonadditive manner to insulin/oligomycin, and decreased insulin/oligomycin-stimulated glucose uptake (-32%/-68%). In conclusion, 1) CD36 translocation, just like GLUT4 translocation, is a vesicle-mediated process depending on coat proteins, and 2) GLUT4 and CD36 trafficking are differentially dependent on endosomal pH and actin filaments. The latter conclusion suggests novel strategies to alter cardiac substrate preference as part of metabolic modulation therapy.


Journal of Molecular and Cellular Cardiology | 2014

Protein kinase-D1 overexpression prevents lipid-induced cardiac insulin resistance.

Ellen Dirkx; Guillaume van Eys; Robert W. Schwenk; Laura K.M. Steinbusch; Nicole Hoebers; Will A. Coumans; Tim Peters; Ben J. A. Janssen; Boudewijn Brans; Andreas T. Vogg; Dietbert Neumann; Jan F.C. Glatz; Joost J. F. P. Luiken

In the insulin resistant heart, energy fuel selection shifts away from glucose utilization towards almost complete dependence on long-chain fatty acids (LCFA). This shift results in excessive cardiac lipid accumulation and eventually heart failure. Lipid-induced cardiomyopathy may be averted by strategies that increase glucose uptake without elevating LCFA uptake. Protein kinase-D1 (PKD1) is involved in contraction-induced glucose, but not LCFA, uptake allowing to hypothesize that this kinase is an attractive target to treat lipid-induced cardiomyopathy. For this, cardiospecific constitutively active PKD1 overexpression (caPKD1)-mice were subjected to an insulin resistance-inducing high fat-diet for 20-weeks. Substrate utilization was assessed by microPET and cardiac function by echocardiography. Cardiomyocytes were isolated for measurement of substrate uptake, lipid accumulation and insulin sensitivity. Wild-type mice on a high fat-diet displayed increased basal myocellular LCFA uptake, increased lipid deposition, greatly impaired insulin signaling, and loss of insulin-stimulated glucose and LCFA uptake, which was associated with concentric hypertrophic remodeling. The caPKD1 mice on high-fat diet showed none of these characteristics, whereas on low-fat diet a shift towards cardiac glucose utilization in combination with hypertrophy and ventricular dilation was observed. In conclusion, these data suggest that PKD pathway activation may be an attractive therapeutic strategy to mitigate lipid accumulation, insulin resistance and maladaptive remodeling in the lipid-overloaded heart, but this requires further investigation.


Neurobiology of Disease | 2009

Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding

Pilar Martinez-Martinez; Marko Phernambucq; Laura K.M. Steinbusch; Laurent Schaeffer; Sonia Berrih-Aknin; Hans Duimel; Peter M. Frederik; Peter C. M. Molenaar; Marc H. De Baets; Mario Losen

The receptor-associated protein of the synapse (rapsyn) is required for anchoring and stabilizing the nicotinic acetylcholine receptor (AChR) in the postsynaptic membrane of the neuromuscular junction (NMJ) during development. Here we studied the role of rapsyn in the maintenance of the adult NMJ by reducing rapsyn expression levels with short hairpin RNA (shRNA). Silencing rapsyn led to the average reduction of the protein levels of rapsyn (31% loss) and AChR (36% loss) at the NMJ within 2 weeks, corresponding to previously reported half life of these proteins. On the other hand, the sodium channel protein expression was augmented (66%) in rapsyn-silenced muscles. Unexpectedly, at the ultrastructural level a significant increase in the amount of secondary folds of the postsynaptic membrane in silenced muscles was observed. The neuromuscular transmission in rapsyn-silenced muscles was mildly impaired. The results suggest that the adult NMJ can rapidly produce postsynaptic folds to compensate for AChR and rapsyn loss.


Diabetes | 2017

Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction

Yilin Liu; Laura K.M. Steinbusch; Miranda Nabben; Dimitris Kapsokalyvas; Marc A. M. J. van Zandvoort; Patrick Schönleitner; Gudrun Antoons; Peter J. Simons; Will A. Coumans; Amber Geomini; Dipanjan Chanda; Jan F.C. Glatz; Dietbert Neumann; Joost J. F. P. Luiken

Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H+-ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V1 and the integral membrane V0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction.

Collaboration


Dive into the Laura K.M. Steinbusch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michaela Diamant

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge