Laura Kreidberg
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Kreidberg.
Nature | 2014
Laura Kreidberg; Jacob L. Bean; J.-M. Desert; Björn Benneke; Drake Deming; Kevin B. Stevenson; Sara Seager; Zachory K. Berta-Thompson; Andreas Seifahrt; D. Homeier
Recent surveys have revealed that planets intermediate in size between Earth and Neptune (‘super-Earths’) are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet’s atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet’s atmosphere must contain clouds to be consistent with the data.
The Astrophysical Journal | 2012
Laura Kreidberg; Charles D. Bailyn; W. M. Farr; V. Kalogera
We explore possible systematic errors in the mass measurements of stellar mass black holes (BHs). We find that significant errors can arise from the assumption of zero or constant emission from the accretion flow, which is commonly used when determining orbital inclination by modeling ellipsoidal variations. For A0620?00, the system with the best available data, we show that typical data sets and analysis procedures can lead to systematic underestimates of the inclination by 10? or more. A careful examination of the available data for the 15 other X-ray transients with low-mass donors suggests that this effect may significantly reduce the BH mass estimates in several other cases, most notably that of GRO J0422+32. Assuming that GRO J0422+32 behaves similarly to A0620?00, the reduction in the mass of GRO J0422+32 fills the mass gap between the low end of the distribution and the maximum theoretical neutron star mass, as has been identified in previous studies. Otherwise, we find that the mass distribution retains other previously identified characteristics, namely a peak around 8 M ?, a paucity of sources with masses below 5 M ?, and a sharp drop-off above 10 M ?.
The Astrophysical Journal | 2014
Laura Kreidberg; Jacob L. Bean; Jean-Michel Desert; Michael R. Line; Jonathan J. Fortney; Nikku Madhusudhan; Kevin B. Stevenson; David Charbonneau; Peter Rankin McCullough; Sara Seager; Adam Burrows; Gregory W. Henry; Michael H. Williamson; Tiffany Kataria; Derek Homeier
The water abundance in a planetary atmosphere provides a key constraint on the planet’s primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We nd the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0:4 3:5 solar at 1 condence). The metallicity of WASP-43b’s atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses. Subject headings: planets and satellites: atmospheres | planets and satellites: composition | planets and satellites: individual: WASP-43b
The Astrophysical Journal | 2014
Heather A. Knutson; Diana Dragomir; Laura Kreidberg; Eliza M.-R. Kempton; Peter Rankin McCullough; Jonathan J. Fortney; Jacob L. Bean; Michaël Gillon; D. Homeier; Andrew W. Howard
Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1 10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope nearinfrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3’s scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1� uncertainty of 19 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 17� level. They are a good match for flat models corresponding to either a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of a mbar or higher. Subject headings: binaries: eclipsing — planetary systems — techniques: spectroscopy
The Astrophysical Journal | 2015
Laura Kreidberg; Michael R. Line; Jacob L. Bean; Kevin B. Stevenson; Jean-Michel Desert; Nikku Madhusudhan; Jonathan J. Fortney; Joanna K. Barstow; Gregory W. Henry; Michael H. Williamson
Detailed characterization of exoplanets has begun to yield measurements of their atmospheric properties that constrain the planets’ origins and evolution. For example, past observations of the dayside emission spectrum of the hot Jupiter WASP-12b indicated that its atmosphere has a high carbon-tooxygen ratio (C/O > 1), suggesting it had a dierent formation pathway than is commonly assumed for giant planets. Here we report a precise near-infrared transmission spectrum for WASP-12b based on six transit observations with the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotometric light curves from 0.84 - 1.67 m and measure the transit depths to a median precision of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and nd strong evidence for water absorption (7 condence). This detection marks the rst high-condence, spectroscopic identication of a molecule in the atmosphere of WASP-12b. The retrieved 1 water volume mixing ratio is between 10 5 10 2 , which is consistent with C/O > 1 to within 2 . However, we also introduce a new retrieval parameterization that ts for C/O and metallicity under the assumption of chemical equilibrium. With this approach, we constrain C/O to 0:5 +0:2 0:3 at 1 and rule out a carbon-rich atmosphere composition (C/O> 1) at > 3 condence. Further observations and modeling of the planet’s global thermal structure and dynamics would aid in resolving the tension between our inferred C/O and previous constraints. Our ndings highlight the importance of obtaining high-precision data with multiple observing techniques in order to obtain robust constraints on the chemistry and physics of exoplanet atmospheres. Subject headings: planets and satellites: atmospheres | planets and satellites: composition | planets and satellites: individual: WASP-12b
Publications of the Astronomical Society of the Pacific | 2014
Charles A. Beichman; Bjoern Benneke; Heather A. Knutson; Roger Smith; Pierre Olivier Lagage; Courtney D. Dressing; David W. Latham; Jonathan I. Lunine; Stephan M. Birkmann; Pierre Ferruit; Giovanna Giardino; Eliza M.-R. Kempton; Sean J. Carey; Jessica E. Krick; Pieter Deroo; Avi M. Mandell; Michael E. Ressler; Avi Shporer; Mark R. Swain; Gautam Vasisht; George R. Ricker; Jeroen Bouwman; Ian J. M. Crossfield; Tom Greene; Steve B. Howell; Jessie L. Christiansen; David R. Ciardi; Mark Clampin; Matt Greenhouse; A. Sozzetti
This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWSTs unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.
Publications of the Astronomical Society of the Pacific | 2015
Laura Kreidberg
I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at this https URL .
The Astrophysical Journal | 2015
Tiffany Kataria; Jonathan J. Fortney; Kevin B. Stevenson; Michael R. Line; Laura Kreidberg; Jacob L. Bean; Jean-Michel Desert
© 2015. The American Astronomical Society. All rights reserved. The hot Jupiter WASP-43b (2 MJ , 1 RJ , T orb = 19.5 hr) has now joined the ranks of transiting hot Jupiters HD 189733b and HD 209458b as an exoplanet with a large array of observational constraints. Because WASP-43b receives a similar stellar flux as HD 209458b but has a rotation rate four times faster and a higher gravity, studying WASP-43b probes the effect of rotation rate and gravity on the circulation when stellar irradiation is held approximately constant. Here we present three-dimensional (3D) atmospheric circulation models of WASP-43b, exploring the effects of composition, metallicity, and frictional drag. We find that the circulation regime of WASP-43b is not unlike other hot Jupiters, with equatorial superrotation that yields an eastward-shifted hotspot and large day-night temperature variations (600 K at photospheric pressures). We then compare our model results to Hubble Space Telescope (HST)/WFC3 spectrophotometric phase curve measurements of WASP-43b from 1.12 to 1.65 μm. Our results show the 5× solar model light curve provides a good match to the data, with a peak flux phase offset and planet/star flux ratio that is similar to observations; however, the model nightside appears to be brighter. Nevertheless, our 5× solar model provides an excellent match to the WFC3 dayside emission spectrum. This is a major success, as the result is a natural outcome of the 3D dynamics with no model tuning. These results demonstrate that 3D circulation models can help interpret exoplanet atmospheric observations, even at high resolution, and highlight the potential for future observations with HST, James Webb Space Telescope, and other next-generation telescopes.
The Astronomical Journal | 2016
Michael R. Line; Kevin B. Stevenson; Jacob L. Bean; Jean Michel Désert; Jonathan J. Fortney; Laura Kreidberg; Nikku Madhusudhan; Hannah Diamond-Lowe
GO Treasury Program [13467]; NASA [NAS 5-26555]; David and Lucile Packard Foundation; NASA - Space Telescope Science Institute [51362]; NASA Exoplanet Science Institute Sagan Postdoctoral Fellowship
The Astrophysical Journal | 2016
Laura Kreidberg; Abraham Loeb
The newly detected Earth-mass planet in the habitable zone of Proxima Centauri could potentially host life - if it has an atmosphere that supports surface liquid water. We show that thermal phase curve observations with the James Webb Space Telescope (JWST) from 5-12 microns can be used to test the existence of such an atmosphere. We predict the thermal variation for a bare rock versus a planet with 35% heat redistribution to the nightside and show that a JWST phase curve measurement can distinguish between these cases at