Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Lupi is active.

Publication


Featured researches published by Laura Lupi.


Journal of the American Chemical Society | 2014

Heterogeneous Nucleation of Ice on Carbon Surfaces

Laura Lupi; Arpa Hudait; Valeria Molinero

Atmospheric aerosols can promote the heterogeneous nucleation of ice, impacting the radiative properties of clouds and Earths climate. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. It is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. Here we use molecular dynamics simulations to investigate the nucleation of ice from liquid water in contact with graphitic surfaces. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. Graphitic surfaces and other surfaces that promote ice nucleation induce layering in the interfacial water, suggesting that the order imposed by the surface on liquid water may play an important role in the heterogeneous nucleation mechanism. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. We conclude that a characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency.


Journal of Physical Chemistry A | 2014

Does Hydrophilicity of Carbon Particles Improve Their Ice Nucleation Ability

Laura Lupi; Valeria Molinero

Carbonaceous particles account for 10% of the particulate matter in the atmosphere. Atmospheric oxidation and aging of soot modulates its ice nucleation ability. It has been suggested that an increase in the ice nucleation ability of aged soot results from an increase in the hydrophilicity of the surfaces upon oxidation. Oxidation, however, also impacts the nanostructure of soot, making it difficult to assess the separate effects of soot nanostructure and hydrophilicity in experiments. Here we use molecular dynamics simulations to investigate the effect of changes in hydrophilicity of model graphitic surfaces on the freezing temperature of ice. Our results indicate that the hydrophilicity of the surface is not in general a good predictor of ice nucleation ability. We find a correlation between the ability of a surface to promote nucleation of ice and the layering of liquid water at the surface. The results of this work suggest that ordering of liquid water in contact with the surface plays an important role in the heterogeneous ice nucleation mechanism.


Journal of Physical Chemistry B | 2010

Broadband Depolarized Light Scattering Study of Diluted Protein Aqueous Solutions

Stefania Perticaroli; L. Comez; Marco Paolantoni; Paola Sassi; Laura Lupi; D. Fioretto; Alessandro Paciaroni; Assunta Morresi

A broadband depolarized light scattering (DLS) study is performed on diluted lysozyme aqueous solutions as a function of temperature and concentration. The dynamical susceptibility, obtained in a wide spectral range (0.6-36000 GHz) through the coupled use of interferometric and dispersive devices, is interpreted and compared with neutron scattering and Raman-induced optical Kerr-effect literature data, thus giving a general picture of relaxation phenomena. We show that the proposed approach represents a suitable tool for investigating the hydration dynamics of protein-water solutions. A detailed analysis of the quasi-elastic scattering region evidences the existence of two distinct relaxational processes at picosecond time scales. The fast process (fractions of picosecond) is attributed to bulk water dynamics, while the slow one (few picoseconds) is attributed to dynamical rearrangements of water molecules strongly influenced by the protein (hydration water). The retardation effect here estimated of about 6-7 can be regarded as a direct measure of the increased protein-water and water-water hydrogen bond stability of the water molecules within the protein hydration shell. Interestingly, a similar effect was previously observed on small hydrophilic sugar molecules. Moreover, backbone and side chains torsional motions of the protein in the 600-5300 GHz frequency range are found to be insensitive to thermal variations and to eventual changes occurring in the premelting zone.


Journal of Physical Chemistry Letters | 2013

More Is Different: Experimental Results on the Effect of Biomolecules on the Dynamics of Hydration Water.

L. Comez; Laura Lupi; Assunta Morresi; Marco Paolantoni; Paola Sassi; D. Fioretto

Biological interfaces characterized by a complex mixture of hydrophobic, hydrophilic, or charged moieties interfere with the cooperative rearrangement of the hydrogen-bond network of water. In the present study, this solute-induced dynamical perturbation is investigated by extended frequency range depolarized light scattering experiments on an aqueous solution of a variety of systems of different nature and complexity such as small hydrophobic and hydrophilic molecules, amino acids, dipeptides, and proteins. Our results suggest that a reductionist approach is not adequate to describe the rearrangement of hydration water because a significant increase of the dynamical retardation and extension of the perturbation occurs when increasing the chemical complexity of the solute.


Journal of Physical Chemistry B | 2012

Hydration and Aggregation in Mono- and Disaccharide Aqueous Solutions by Gigahertz-to-Terahertz Light Scattering and Molecular Dynamics Simulations

Laura Lupi; L. Comez; M. Paolantoni; Stefania Perticaroli; Paola Sassi; A. Morresi; Branka M. Ladanyi; D. Fioretto

The relaxation properties of hydration water around fructose, glucose, sucrose, and trehalose molecules have been studied by means of extended frequency range depolarized light scattering and molecular dynamics simulations. Evidence is given of hydration dynamics retarded by a factor ξ = 5-6 for all the analyzed solutes. A dynamical hydration shell is defined based on the solute-induced slowing down of water mobility at picosecond time scales. The number of dynamically perturbed water molecules N(h) and its concentration dependence have been determined in glucose and trehalose aqueous solutions up to high solute weight fractions (ca. 45%). For highly dilute solutions, about 3.3 water molecules per sugar hydroxyl group are found to be part of the hydration shell of mono- and disaccharide. For increasing concentrations, a noticeable solute-dependent reduction of hydration number occurs, which has been attributed, in addition to simple statistical shells overlapping, to aggregation of solute molecules. A scaling law based on the number of hydroxyl groups collapses the N(h) concentration dependence of glucose and trehalose into a single master plot, suggesting hydration and aggregation properties independent of the size of the sugar. As a whole, the present results point to the concentration of hydroxyl groups as the parameter guiding both sugar-water and sugar-sugar interactions, without appreciable difference between mono- and disaccharides.


Journal of Physical Chemistry B | 2012

Dynamics of Biological Water: Insights from Molecular Modeling of Light Scattering in Aqueous Trehalose Solutions

Laura Lupi; L. Comez; Marco Paolantoni; D. Fioretto; Branka M. Ladanyi

Extended depolarized light scattering (EDLS) measurements have been recently employed to investigate the dynamics of water solvating biological molecules, giving evidence of the presence of two different dynamical regimes among water molecules. An interpretation of EDLS has been proposed that provides an independent estimate of the retardation factor of slowdown with respect to fast water molecules and of the number of solvent molecules affected by this slowing down. Nevertheless this measure is an inherently complex one, due to the collective nature of the physical property probed. In the present work a molecular dynamics (MD) approach has been used to more deeply understand experimental results. Time correlation functions of the collective polarizability anisotropy have been calculated for the prototype disaccharide trehalose in aqueous solutions as a function of concentration. The unique capability of MD to disentangle the contributions to the dynamics arising from solute, solvent, and cross terms between the two allowed us to check the reliability of an interpretation that assumes a spectral separation of water and sugar dynamics, as well as to highlight the very presence of two distinct relaxation processes in water. The two processes have been attributed to the dynamics of bulk and hydration water, respectively. A retardation factor of ~5 and concentration dependent hydration numbers have been observed, in good agreement with experimental results [Paolantoni, M.; et al. J. Phys. Chem. B 2009, 113, 7874-7878].


Journal of Chemical Physics | 2014

Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

Laura Lupi; Noah Kastelowitz; Valeria Molinero

Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.


Nature | 2017

Role of stacking disorder in ice nucleation

Laura Lupi; Arpa Hudait; Baron Peters; Michael Grünwald; Ryan Gotchy Mullen; Andrew Nguyen; Valeria Molinero

The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.


Journal of Chemical Physics | 2016

Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism

Laura Lupi; Baron Peters; Valeria Molinero

According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.


Journal of Physical Chemistry B | 2015

Hydrophobic Hydration in Water-tert-Butyl Alcohol Solutions by Extended Depolarized Light Scattering.

L. Comez; M. Paolantoni; Laura Lupi; Paola Sassi; S. Corezzi; A. Morresi; D. Fioretto

Molecular dynamics and structural properties of water-tert-butyl alcohol (TBA) mixtures are studied as a function of concentration by extended depolarized light scattering (EDLS) experiments. The wide frequency range, going from fraction to several thousand GHz, explored by EDLS allows distinguishing TBA rotational dynamics from structural relaxation of water and intermolecular vibrational and librational modes of the solution. Contributions to the water relaxation originating from two distinct populations, i.e. hydration and bulk water, are clearly identified. The dynamic retardation factor of hydration water with respect to the bulk, ξ ≈ 4, almost concentration independent, is one of the smallest found by EDLS among a variety of systems of different nature and complexity. This result, together with the small number of water molecules perturbed by the presence of TBA, supports the idea that hydrophobic simple molecules are less effective than hydrophilic and more complex molecules in perturbing the H-bond network of liquid water. At increasing TBA concentrations the average number of perturbed water molecules shows a pronounced decrease and the characteristic frequency of librational motions reduces significantly, both of which are results consistent with the occurrence of self-aggregation of TBA molecules.

Collaboration


Dive into the Laura Lupi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Comez

University of Perugia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge