Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Beaver is active.

Publication


Featured researches published by Laura M. Beaver.


Advances in Nutrition | 2011

Dietary Factors and Epigenetic Regulation for Prostate Cancer Prevention

Emily Ho; Laura M. Beaver; David E. Williams; Roderick H. Dashwood

The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.


PLOS ONE | 2014

Effects of sulforaphane and 3,3'-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells.

Carmen P. Wong; Anna Hsu; Alex Buchanan; Zoraya Palomera-Sanchez; Laura M. Beaver; E. Andres Houseman; David E. Williams; Roderick H. Dashwood; Emily Ho

Epigenetic changes, including aberrant DNA methylation, result in altered gene expression and play an important role in carcinogenesis. Phytochemicals such as sulforaphane (SFN) and 3,3′-diindolylmethane (DIM) are promising chemopreventive agents for the treatment of prostate cancer. Both have been shown to induce re-expression of genes, including tumor suppressor genes silenced in cancer cells, via modulation of epigenetic marks including DNA methylation. However, it remained unclear the effects SFN and DIM on DNA methylation at a genomic scale. The goal of this study was to determine the genome-wide effects of SFN and DIM on promoter methylation in normal prostate epithelial cells and prostate cancer cells. Both SFN and DIM treatment decreased DNA methyltransferase expression in normal prostate epithelial cells (PrEC), and androgen-dependent (LnCAP) and androgen-independent (PC3) prostate cancer cells. The effects of SFN and DIM on promoter methylation profiles in normal PrEC, LnCAP and PC3 prostate cancer cells were determined using methyl-DNA immunoprecipitation followed by genome-wide DNA methylation array. We showed widespread changes in promoter methylation patterns, including both increased and decreased methylation, in all three prostate cell lines in response to SFN or DIM treatments. In particular, SFN and DIM altered promoter methylation in distinct sets of genes in PrEC, LnCAP, and PC3 cells, but shared similar gene targets within a single cell line. We further showed that SFN and DIM reversed many of the cancer-associated methylation alterations, including aberrantly methylated genes that are dysregulated or are highly involved in cancer progression. Overall, our data suggested that both SFN and DIM are epigenetic modulators that have broad and complex effects on DNA methylation profiles in both normal and cancerous prostate epithelial cells. Results from our study may provide new insights into the epigenetic mechanisms by which SFN and DIM exert their cancer chemopreventive effects.


Current Biology | 2004

Regulation of copulation duration by period and timeless in Drosophila melanogaster.

Laura M. Beaver; Jadwiga M. Giebultowicz

The circadian clock involves several clock genes encoding interacting transcriptional regulators. Mutations in clock genes in Drosophila melanogaster, period (per), timeless (tim), Clock (Clk), and cycle (cyc), produce multiple phenotypes associated with physiology, behavior, development, and morphology. It is not clear whether these genes always work as clock components or may also act in some unknown pleiotropic fashion. We report here that per and tim are involved in a novel, male-specific phenotype that affects behavioral timing on the order of minutes. Males lacking per or tim copulate significantly longer than males with normal per or tim function, while females do not show this effect. No correlation between fertility and extended copulation duration was found. Several lines of evidence suggest that the time in copula (TIC) is not regulated by the known clock mechanism. First, the period of free-running clock oscillations does not appear to affect this phenotype. Second, constant light, which abolishes the clock function, does not alter TIC. Finally, mutations in the positively acting clock transcription factors, Clk and cyc, do not affect TIC. Our study extends the repertoire of behavioral functions involving per and tim genes and uncovers another time scale over which these genes may act.


PLOS ONE | 2012

Circadian Regulation of Glutathione Levels and Biosynthesis in Drosophila melanogaster

Laura M. Beaver; Vladimir I. Klichko; Eileen S. Chow; Joanna Kotwica-Rolinska; Marisa Williamson; William C. Orr; Svetlana N. Radyuk; Jadwiga M. Giebultowicz

Circadian clocks generate daily rhythms in neuronal, physiological, and metabolic functions. Previous studies in mammals reported daily fluctuations in levels of the major endogenous antioxidant, glutathione (GSH), but the molecular mechanisms that govern such fluctuations remained unknown. To address this question, we used the model species Drosophila, which has a rich arsenal of genetic tools. Previously, we showed that loss of the circadian clock increased oxidative damage and caused neurodegenerative changes in the brain, while enhanced GSH production in neuronal tissue conferred beneficial effects on fly survivorship under normal and stress conditions. In the current study we report that the GSH concentrations in fly heads fluctuate in a circadian clock-dependent manner. We further demonstrate a rhythm in activity of glutamate cysteine ligase (GCL), the rate-limiting enzyme in glutathione biosynthesis. Significant rhythms were also observed for mRNA levels of genes encoding the catalytic (Gclc) and modulatory (Gclm) subunits comprising the GCL holoenzyme. Furthermore, we found that the expression of a glutathione S-transferase, GstD1, which utilizes GSH in cellular detoxification, significantly fluctuated during the circadian day. To directly address the role of the clock in regulating GSH-related rhythms, the expression levels of the GCL subunits and GstD1, as well as GCL activity and GSH production were evaluated in flies with a null mutation in the clock genes cycle and period. The rhythms observed in control flies were not evident in the clock mutants, thus linking glutathione production and utilization to the circadian system. Together, these data suggest that the circadian system modulates pathways involved in production and utilization of glutathione.


Aaps Journal | 2013

Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention.

Gregory W. Watson; Laura M. Beaver; David E. Williams; Roderick H. Dashwood; Emily Ho

Epidemiological evidence has demonstrated a reduced risk of prostate cancer associated with cruciferous vegetable intake. Follow-up studies have attributed this protective activity to the metabolic products of glucosinolates, a class of secondary metabolites produced by crucifers. The metabolic products of glucoraphanin and glucobrassicin, sulforaphane, and indole-3-carbinol respectively, have been the subject of intense investigation by cancer researchers. Sulforaphane and indole-3-carbinol inhibit prostate cancer by both blocking initiation and suppressing prostate cancer progression in vitro and in vivo. Research has largely focused on the anti-initiation and cytoprotective effects of sulforaphane and indole-3-carbinol through induction of phases I and II detoxification pathways. With regards to suppressive activity, research has focused on the ability of sulforaphane and indole-3-carbinol to antagonize cell signaling pathways known to be dysregulated in prostate cancer. Recent investigations have characterized the ability of sulforaphane and indole-3-carbinol derivatives to modulate the activity of enzymes controlling the epigenetic status of prostate cancer cells. In this review, we will summarize the well-established, “classic” non-epigenetic targets of sulforaphane and indole-3-carbinol, and highlight more recent evidence supporting these phytochemicals as epigenetic modulators for prostate cancer chemoprevention.


Toxicological Sciences | 2010

Circadian clock regulates response to pesticides in Drosophila via conserved Pdp1 pathway

Laura M. Beaver; Louisa A. Hooven; Shawn Butcher; Natraj Krishnan; Katherine Alice Sherman; Eileen Shin-Yeu Chow; Jadwiga M. Giebultowicz

Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The epsilon-isoform of the PAR-domain protein 1 (Pdp1epsilon) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1epsilon increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and alpha-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity.


Aging Cell | 2017

Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism

Rong Wang; Zhen Yu; Bharath Sunchu; James Shoaf; Ivana Dang; Stephanie Zhao; Kelsey Caples; Lynda Bradley; Laura M. Beaver; Emily Ho; Christiane V. Löhr; Viviana I. Pérez

Senescent cells contribute to age‐related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild‐type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA‐β‐galactosidase (β‐gal) staining, senescence‐associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β‐gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β‐gal staining and pro‐inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP.


Current Pharmacology Reports | 2015

Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention

Lauren L. Atwell; Laura M. Beaver; Jackilen Shannon; David E. Williams; Roderick H. Dashwood; Emily Ho

Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that has multiple molecular targets and anti-cancer properties. Researchers have demonstrated several chemopreventive benefits of SFN consumption, such as reductions in tumor growth, increases in cancer cell apoptosis, and disruption of signaling within tumor microenvironments both in vitro and in vivo. Emerging evidence indicates that SFN exerts several of its chemopreventive effects by altering epigenetic mechanisms. This review summarizes evidence of the impact of SFN on epigenetic events and how they relate to the chemopreventive effects of SFN observed in preclinical and clinical studies of breast and prostate cancers. Specific areas of focus include the role of SFN in the regulation of cell cycle, apoptosis, inflammation, antioxidant defense, and cancer cell signaling and their relationships to epigenetic mechanisms. Finally, remaining challenges and research needs for translating mechanistic work with SFN into human studies and clinical intervention trials are discussed.


Molecular Nutrition & Food Research | 2014

Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention.

Laura M. Beaver; Alex Buchanan; Elizabeth I. Sokolowski; Allison N. Riscoe; Carmen P. Wong; Jeff H. Chang; Christiane V. Löhr; David E. Williams; Roderick H. Dashwood; Emily Ho

SCOPE Epidemiological studies provide evidence that consumption of cruciferous vegetables, like broccoli, can reduce the risk of cancer development. Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that induces anti-proliferative and pro-apoptotic responses in prostate cancer cells, but not in normal prostate cells. The mechanisms responsible for this cancer-specific cytotoxicity remain unclear. METHODS AND RESULTS We utilized RNA sequencing and determined the transcriptomes of normal prostate epithelial cells, androgen-dependent prostate cancer cells, and androgen-independent prostate cancer cells treated with SFN. SFN treatment dynamically altered gene expression and resulted in distinct transcriptome profiles depending on prostate cell line. SFN also down-regulated the expression of genes that were up-regulated in prostate cancer cells. Network analysis of genes altered by SFN treatment revealed that the transcription factor Specificity protein 1 (Sp1) was present in an average of 90.5% of networks. Sp1 protein was significantly decreased by SFN treatment in prostate cancer cells and Sp1 may be an important mediator of SFN-induced changes in expression. CONCLUSION Overall, the data show that SFN alters gene expression differentially in normal and cancer cells with key targets in chemopreventive processes, making it a promising dietary anti-cancer agent.


Journal of Nutritional Biochemistry | 2017

Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer

Laura M. Beaver; Rachael Kuintzle; Alex Buchanan; Michelle W. Wiley; Sarah T Glasser; Carmen P. Wong; Gavin S. Johnson; Jeff H. Chang; Christiane V. Löhr; David E. Williams; Roderick H. Dashwood; David A. Hendrix; Emily Ho

Long noncoding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole-genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or dimethylsulfoxide. SFN significantly altered expression of ~100 lncRNAs in each cell type and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells and significantly up-regulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A four-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer.

Collaboration


Dive into the Laura M. Beaver's collaboration.

Top Co-Authors

Avatar

Emily Ho

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Hsu

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge