Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Castellano is active.

Publication


Featured researches published by Laura M. Castellano.


Journal of Pharmacology and Experimental Therapeutics | 2010

Nicotinic Partial Agonists Varenicline and Sazetidine-A Have Differential Effects on Affective Behavior

Jill R. Turner; Laura M. Castellano; Julie A. Blendy

Clinical and preclinical studies suggest that nicotinic acetylcholine receptors are involved in affective disorders; therefore, the potential therapeutic value of nicotinic partial agonists as treatments of these disorders is of growing interest. This study evaluated the effects of acute and chronic administration of nicotine and the α4β2 nicotinic partial agonists varenicline and sazetidine-A in mouse models of anxiety and depression. Acutely, only nicotine and varenicline had anxiolytic effects in the marble-burying test and in the novelty-induced hypophagia (NIH) test. In contrast, in animal models of antidepressant efficacy, such as the forced swim and the tail suspension test, only acute sazetidine-A had significant antidepressant-like effects. The NIH test provides an anxiety-related measure that is sensitive to the effects of chronic but not acute antidepressant treatment. Chronic nicotine and chronic sazetidine-A treatment were effective in this paradigm, but varenicline was ineffective. These results suggest that the partial agonists varenicline and sazetidine-A may have diverse therapeutic benefits in affective disorders.


Nicotine & Tobacco Research | 2011

Parallel Anxiolytic-Like Effects and Upregulation of Neuronal Nicotinic Acetylcholine Receptors Following Chronic Nicotine and Varenicline

Jill R. Turner; Laura M. Castellano; Julie A. Blendy

INTRODUCTION Clinical and preclinical studies suggest that regulation of nicotinic acetylcholine receptors (nAChR) maybe involved in the etiology of withdrawal symptoms. METHODS We evaluated heteromeric nAChR regulation via [³H]epibatidine binding following cessation of chronic nicotine or varenicline treatment. Animals were concurrently tested in the marble-burying test to evaluate treatment-related effects. RESULTS We found that both nicotine (18 mg/kg/day, free base) and varenicline (1.8 mg/kg/day) chronically administered for 14 days upregulated nAChRs significantly in the cortex, hippocampus, striatum, and thalamus. The duration of upregulation (up to 72 hr) was both drug and region specific. In addition to nAChR upregulation, chronic administration of both nicotine and varenicline had anxiolytic-like effects in the marble-burying test. This effect was maintained for 48 hr following cessation of varenicline but was absent 24 hr following cessation from nicotine. Additionally, marble-burying behavior positively correlated to the regulation of cortical nAChRs following cessation of either treatment. CONCLUSIONS Varenicline has been shown to be an efficacious smoking cessation aid, with a proposed mechanism of action that includes modulation of dopamine release in reward areas of the brain. Our studies show that varenicline elicits both anxiolytic effects in the marble-burying test as well as region- and time-specific receptor upregulation. These findings suggest receptor upregulation as a mechanism for its efficacy as a smoking cessation therapy.


Biology | 2012

The Surprising Role of Amyloid Fibrils in HIV Infection

Laura M. Castellano; James Shorter

Despite its discovery over 30 years ago, human immunodeficiency virus (HIV) continues to threaten public health worldwide. Semen is the principal vehicle for the transmission of this retrovirus and several endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), potentiate HIV infection by up to 105-fold. Fibrils enhance infectivity by facilitating virion attachment and fusion to target cells, whereas soluble peptides have no effect. Importantly, the stimulatory effect is greatest at low viral titers, which mimics mucosal transmission of HIV, where relatively few virions traverse the mucosal barrier. Devising a method to rapidly reverse fibril formation (rather than simply inhibit it) would provide an innovative and urgently needed preventative strategy for reducing HIV infection via the sexual route. Targeting a host-encoded protein conformer represents a departure from traditional microbicidal approaches that target the viral machinery, and could synergize with direct antiviral approaches. Here, we review the identification of these amyloidogenic peptides, their mechanism of action, and various strategies for inhibiting their HIV-enhancing effects.


eLife | 2015

A molecular tweezer antagonizes seminal amyloids and HIV infection

Edina Lump; Laura M. Castellano; Christoph Meier; Janine Seeliger; Nelli Erwin; Benjamin Sperlich; Christina M. Stürzel; Shariq M. Usmani; Rebecca M. Hammond; Jens von Einem; Gisa Gerold; Florian Kreppel; Kenny Bravo-Rodriguez; Thomas Pietschmann; Veronica M. Holmes; David Palesch; Onofrio Zirafi; Drew Weissman; Andrea Sowislok; Burkhard Wettig; Christian Heid; Frank Kirchhoff; Tanja Weil; Frank-Gerrit Klärner; Thomas Schrader; Gal Bitan; Elsa Sanchez-Garcia; Roland Winter; James Shorter; Jan Münch

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a ‘molecular tweezer’ specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion–amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses. DOI: http://dx.doi.org/10.7554/eLife.05397.001


Chemistry & Biology | 2015

Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection.

Laura M. Castellano; Stephen M. Bart; Veronica M. Holmes; Drew Weissman; James Shorter

Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility.


PLOS ONE | 2014

Suramin Inhibits Hsp104 ATPase and Disaggregase Activity

Mariana P. Torrente; Laura M. Castellano; James Shorter

Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.


PLOS ONE | 2014

A demonstration of nesting in two antarctic icefish (genus Chionodraco) using a fin dimorphism analysis and ex situ videos.

Sara Ferrando; Laura M. Castellano; Lorenzo Gallus; Laura Ghigliotti; Maria Angela Masini; Eva Pisano; Marino Vacchi

Visual observations and videos of Chionodraco hamatus icefish at the “Acquario di Genova” and histological analyses of congeneric species C. hamatus and C. rastrospinosus adults sampled in the field provided new anatomical and behavioral information on the reproductive biology of these white blooded species that are endemic to the High-Antarctic region. During the reproductive season, mature males of both species, which are different from females and immature males, display fleshy, club-like knob modifications of their anal fin that consisted of a much thicker epithelium. Histology indicated that the knobs were without any specialized glandular or sensorial organization, thus suggesting a mechanical and/or ornamental role of the modified anal fin. In addition, the occurrence of necrotic regions at the base of the thickened epithelium and the detachment of the knobs in post-spawning C. hamatus males indicated the temporary nature of the knobs. The role of these structures was confirmed as mechanical and was clarified using visual observations and videos of the behavior of two C. hamatus during a reproductive event that occurred in an exhibit tank at the “Acquario di Genova”. The reproductive process included pre-spawning activity, preparation of the nest, egg guarding and successfully ended with egg hatching. When the spawning event approached, the male prepared the nest. The nest was constructed on an accurately selected bottom surface, which was flattened and maintained free from sand or debris by a combination of radial body movements and continuous anal fin sweeping, thus demonstrating the important mechanical/abrasive function of the anal fin knobs. The present data are the first records of active nesting in icefish and clarify the meaning of dimorphic temporary structures, whose function would have been difficult to obtain in the field.


bioRxiv | 2018

Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase

Alexandrea N Rizo; JiaBei Lin; Stephanie N. Gates; Eric Tse; Stephen M. Bart; Laura M. Castellano; Frank DiMaio; James Shorter; Daniel R. Southworth

Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. To elucidate the translocation mechanism, we determined the cryo-EM structure of a hyperactive ClpB variant to 2.9 Å resolution bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS. Distinct substrate-gripping mechanisms are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent the topmost NBD1 contact. NBD conformations at the spiral seam reveal how ATP hydrolysis and substrate engagement or disengagement are precisely tuned to drive a stepwise translocation cycle.


Cell | 2014

Potentiated Hsp104 Variants Antagonize Diverse Proteotoxic Misfolding Events

Meredith E. Jackrel; Morgan E. DeSantis; Bryan A. Martinez; Laura M. Castellano; Rachel M. Stewart; Kim A. Caldwell; Guy A. Caldwell; James Shorter


Biology Open | 2015

Epigallocatechin-3-gallate rapidly remodels PAP85-120, SEM1(45-107), and SEM2(49-107) seminal amyloid fibrils.

Laura M. Castellano; Rebecca M. Hammond; Veronica M. Holmes; Drew Weissman; James Shorter

Collaboration


Dive into the Laura M. Castellano's collaboration.

Top Co-Authors

Avatar

James Shorter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Drew Weissman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill R. Turner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Julie A. Blendy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Bart

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge