Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Palermo is active.

Publication


Featured researches published by Laura M. Palermo.


PLOS Pathogens | 2010

Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

Matteo Porotto; Barry Rockx; Christine C. Yokoyama; Aparna Talekar; Ilaria DeVito; Laura M. Palermo; Jie Liu; Riccardo Cortese; Min Lu; Heinz Feldmann; Antonello Pessi; Anne Moscona

In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Asymmetric binding of transferrin receptor to parvovirus capsids

Susan Hafenstein; Laura M. Palermo; Victor A. Kostyuchenko; Chuan Xiao; Marc C. Morais; Christian D. S. Nelson; Valorie D. Bowman; Anthony J. Battisti; Paul R. Chipman; Colin R. Parrish; Michael G. Rossmann

Although many viruses are icosahedral when they initially bind to one or more receptor molecules on the cell surface, such an interaction is asymmetric, probably causing a breakdown in the symmetry and conformation of the original infecting virion in preparation for membrane penetration and release of the viral genome. Cryoelectron microscopy and biochemical analyses show that transferrin receptor, the cellular receptor for canine parvovirus, can bind to only one or a few of the 60 icosahedrally equivalent sites on the virion, indicating that either canine parvovirus has inherent asymmetry or binding of receptor induces asymmetry. The asymmetry of receptor binding to canine parvovirus is reminiscent of the special portal in tailed bacteriophages and some large, icosahedral viruses. Asymmetric interactions of icosahedral viruses with their hosts might be a more common phenomenon than previously thought and may have been obscured by averaging in previous crystallographic and electron microscopic structure determinations.


Journal of Virology | 2010

Viral entry inhibitors targeted to the membrane site of action

Matteo Porotto; Christine C. Yokoyama; Laura M. Palermo; Bruce A. Mungall; Mohamad Aljofan; Riccardo Cortese; Antonello Pessi; Anne Moscona

ABSTRACT The fusion of enveloped viruses with the host cell is driven by specialized fusion proteins to initiate infection. The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains, which are central to the complex conformational changes leading to fusion: the first heptad repeat (HRN) is adjacent to the fusion peptide, while the second (HRC) immediately precedes the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one HR peptide, T20 (enfuvirtide), is in clinical use for HIV-1. For paramyxoviruses, the activities of two membrane proteins, the receptor-binding protein (hemagglutinin-neuraminidase [HN] or G) and the fusion protein (F), initiate viral entry. The binding of HN or G to its receptor on a target cell triggers the activation of F, which then inserts into the target cell and mediates the membrane fusion that initiates infection. We have shown that for paramyxoviruses, the inhibitory efficacy of HR peptides is inversely proportional to the rate of F activation. For HIV-1, the antiviral potency of an HRC-derived peptide can be dramatically increased by targeting it to the membrane microdomains where fusion occurs, via the addition of a cholesterol group. We report here that for three paramyxoviruses—human parainfluenza virus type 3 (HPIV3), a major cause of lower respiratory tract diseases in infants, and the emerging zoonotic viruses Hendra virus (HeV) and Nipah virus (NiV), which cause lethal central nervous system diseases—the addition of cholesterol to a paramyxovirus HRC-derived peptide increased antiviral potency by 2 log units. Our data suggest that this enhanced activity is indeed the result of the targeting of the peptide to the plasma membrane, where fusion occurs. The cholesterol-tagged peptides on the cell surface create a protective antiviral shield, target the F protein directly at its site of action, and expand the potential utility of inhibitory peptides for paramyxoviruses.


Journal of Virology | 2009

Structural comparison of different antibodies interacting with parvovirus capsids

Susan Hafenstein; Valorie D. Bowman; Tao Sun; Christian D. S. Nelson; Laura M. Palermo; Paul R. Chipman; Anthony J. Battisti; Colin R. Parrish; Michael G. Rossmann

ABSTRACT The structures of canine parvovirus (CPV) and feline parvovirus (FPV) complexed with antibody fragments from eight different neutralizing monoclonal antibodies were determined by cryo-electron microscopy (cryoEM) reconstruction to resolutions varying from 8.5 to 18 Å. The crystal structure of one of the Fab molecules and the sequence of the variable domain for each of the Fab molecules have been determined. The structures of Fab fragments not determined crystallographically were predicted by homology modeling according to the amino acid sequence. Fitting of the Fab and virus structures into the cryoEM densities identified the footprints of each antibody on the viral surface. As anticipated from earlier analyses, the Fab binding sites are directed to two epitopes, A and B. The A site is on an exposed part of the surface near an icosahedral threefold axis, whereas the B site is about equidistant from the surrounding five-, three-, and twofold axes. One antibody directed to the A site binds CPV but not FPV. Two of the antibodies directed to the B site neutralize the virus as Fab fragments. The differences in antibody properties have been linked to the amino acids within the antibody footprints, the position of the binding site relative to the icosahedral symmetry elements, and the orientation of the Fab structure relative to the surface of the virus. Most of the exposed surface area was antigenic, although each of the antibodies had a common area of overlap that coincided with the positions of the previously mapped escape mutations.


Journal of Virology | 2003

Residues in the Apical Domain of the Feline and Canine Transferrin Receptors Control Host-Specific Binding and Cell Infection of Canine and Feline Parvoviruses

Laura M. Palermo; Karsten Hueffer; Colin R. Parrish

ABSTRACT Canine parvovirus (CPV) and feline panleukopenia virus (FPV) capsids bind to the transferrin receptors (TfRs) of their hosts and use these receptors to infect cells. The binding is partially host specific, as FPV binds only to the feline TfR, while CPV binds to both the canine and feline TfRs. The host-specific binding is controlled by a combination of residues within a raised region of the capsid. To define the TfR structures that interact with the virus, we altered the apical domain of the feline or canine TfR or prepared chimeras of these receptors and tested the altered receptors for binding to FPV or CPV capsids. Most changes in the apical domain of the feline TfR did not affect binding, but replacing Leu221 with Ser or Asp prevented receptor binding to either FPV or CPV capsids, while replacing Leu221 with Lys resulted in a receptor that bound only to CPV but not to FPV. Analysis of recombinants of the feline and canine TfRs showed that sequences controlling CPV-specific binding were within the apical domain and that more than one difference between these receptors determined the CPV-specific binding of the canine TfR. Single changes within the canine TfR which removed a single amino acid insertion or which eliminated a glycosylation site gave that receptor the expanded ability to bind to FPV and CPV. In some cases, binding of capsids to mutant receptors did not result in infection, suggesting a structural role for the receptor in cell infection by the viruses.


Journal of Virology | 2006

Purified feline and canine transferrin receptors reveal complex interactions with the capsids of canine and feline parvoviruses that correspond to their host ranges.

Laura M. Palermo; Susan Hafenstein; Colin R. Parrish

ABSTRACT The cell infection processes and host ranges of canine parvovirus (CPV) and feline panleukopenia virus (FPV) are controlled by their capsid interactions with the transferrin receptors (TfR) on their host cells. Here, we expressed the ectodomains of wild-type and mutant TfR and tested those for binding to purified viral capsids and showed that different naturally variant strains of the viruses were associated with variant interactions with the receptors which likely reflect the optimization of the viral infection processes in the different hosts. While all viruses bound the feline TfR, reflecting their tissue culture host ranges, a naturally variant mutant of CPV (represented by the CPV type-2b strain) that became the dominant virus worldwide in 1979 showed significantly lower levels of binding to the feline TfR. The canine TfR ectodomain did not bind to a detectable level in the in vitro assays, but this appears to reflect the naturally low affinity of that interaction, as only low levels of binding were seen when the receptor was expressed on mammalian cells; however, that was sufficient to allow endocytosis and infection. The apical domain of the canine TfR controls the specific interaction with CPV capsids, as a canine TfR mutant altering a glycosylation site in that domain bound FPV, CPV-2, and CPV-2b capsids efficiently. Enzymatic removal of the N-linked glycans did not allow FPV binding to the canine TfR, suggesting that the protein sequence difference is itself important. The purified feline TfR inhibited FPV and CPV-2 binding and infection of feline cells but not CPV-2b, indicating that the receptor binding may be able to prevent the attachment to the same receptor on cells.


Nature Cell Biology | 2017

A three-dimensional model of human lung development and disease from pluripotent stem cells

Ya Wen Chen; Sarah Xuelian Huang; Ana Luisa Rodrigues Toste de Carvalho; Siu Hong Ho; Mohammad N. Islam; Stefano Volpi; Luigi D. Notarangelo; Michael J. Ciancanelli; Jean-Laurent Casanova; Jahar Bhattacharya; Alice F. Liang; Laura M. Palermo; Matteo Porotto; Anne Moscona; Hans-Willem Snoeck

Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.


Journal of Virology | 2009

Human Parainfluenza Virus Infection of the Airway Epithelium: Viral Hemagglutinin-Neuraminidase Regulates Fusion Protein Activation and Modulates Infectivity

Laura M. Palermo; Matteo Porotto; Christine C. Yokoyama; Samantha G. Palmer; Bruce A. Mungall; Olga Greengard; Stefan Niewiesk; Anne Moscona

ABSTRACT Three discrete activities of the paramyxovirus hemagglutinin-neuraminidase (HN) protein, receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein, each affect the promotion of viral fusion and entry. For human parainfluenza virus type 3 (HPIV3), the effects of specific mutations that alter these functions of the receptor-binding protein have been well characterized using cultured monolayer cells, which have identified steps that are potentially relevant to pathogenesis. In the present study, proposed mechanisms that are relevant to pathogenesis were tested in natural host cell cultures, a model of the human airway epithelium (HAE) in which primary HAE cells are cultured at an air-liquid interface and retain functional properties. Infection of HAE cells with wild-type HPIV3 and variant viruses closely reflects that seen in an animal model, the cotton rat, suggesting that HAE cells provide an ideal system for assessing the interplay of host cell and viral factors in pathogenesis and for screening for inhibitory molecules that would be effective in vivo. Both HN′s receptor avidity and the function and timing of F activation by HN require a critical balance for the establishment of ongoing infection in the HAE, and these HN functions independently modulate the production of active virions. Alterations in HN′s F-triggering function lead to the release of noninfectious viral particles and a failure of the virus to spread. The finding that the dysregulation of F triggering prohibits successful infection in HAE cells suggests that antiviral strategies targeted to HN′s F-triggering activity may have promise in vivo.


Journal of Biological Chemistry | 2012

Mechanism of Fusion Triggering by Human Parainfluenza Virus Type III: COMMUNICATION BETWEEN VIRAL GLYCOPROTEINS DURING ENTRY*

Matteo Porotto; Samantha G. Palmer; Laura M. Palermo; Anne Moscona

Background: Paramyxovirus infection is initiated by coordinated action of the receptor binding (HN) and fusion (F) proteins. Results: HN-F interaction is tracked in real time before and after receptor engagement. Association occurs before receptor engagement. Receptor-engaged HN drives formation of fusion clusters. Conclusion: HN site II regulates HN-HN and HN-F interaction. Significance: Strength of HN-F interaction modulates infection in the natural host. Parainfluenza viruses enter host cells by fusing the viral and target cell membranes via concerted action of their two envelope glycoproteins: the hemagglutinin-neuraminidase (HN) and the fusion protein (F). Receptor-bound HN triggers F to undergo conformational changes that render it fusion-competent. To address the role of receptor engagement and to elucidate how HN and F interact during the fusion process, we used bimolecular fluorescence complementation to follow the dynamics of human parainfluenza virus type 3 (HPIV3) HN/F pairs in living cells. We show that HN and F associate before receptor engagement. HN drives the formation of HN-F clusters at the site of fusion, and alterations in HN-F interaction determine the fusogenicity of the glycoprotein pair. An interactive site, at the HN dimer interface modulates HN fusion activation property, which is critical for infection of the natural host. This first evidence for the sequence of initial events that lead to viral entry may indicate a new paradigm for understanding Paramyxovirus infection.


Journal of Virology | 2004

Parvovirus Infection of Cells by Using Variants of the Feline Transferrin Receptor Altering Clathrin-Mediated Endocytosis, Membrane Domain Localization, and Capsid-Binding Domains

Karsten Hueffer; Laura M. Palermo; Colin R. Parrish

ABSTRACT The feline and canine transferrin receptors (TfRs) bind canine parvovirus to host cells and mediate rapid capsid uptake and infection. The TfR and its ligand transferrin have well-described pathways of endocytosis and recycling. Here we tested several receptor-dependent steps in infection for their role in virus infection of cells. Deletions of cytoplasmic sequences or mutations of the Tyr-Thr-Arg-Phe internalization motif reduced the rate of receptor uptake from the cell surface, while polar residues introduced into the transmembrane sequence resulted in increased degradation of transferrin. However, the mutant receptors still mediated efficient virus infection. In contrast, replacing the cytoplasmic and transmembrane sequences of the feline TfR with those of the influenza virus neuraminidase (NA) resulted in a receptor that bound and endocytosed the capsid but did not mediate viral infection. This chimeric receptor became localized to detergent-insoluble membrane domains. To test the effect of structural virus receptor interaction on infection, two chimeric receptors were prepared which contained antibody-variable domains that bound the capsid in place of the TfR ectodomain. These chimeric receptors bound CPV capsids and mediated uptake but did not result in cell infection. Adding soluble feline TfR ectodomain to the virus during that uptake did not allow infection.

Collaboration


Dive into the Laura M. Palermo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Hafenstein

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Olga Greengard

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge