Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Porotto is active.

Publication


Featured researches published by Matteo Porotto.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A broad-spectrum antiviral targeting entry of enveloped viruses

Mike C. Wolf; Alexander N. Freiberg; Tinghu Zhang; Zeynep Akyol-Ataman; Andrew Grock; Patrick Hong; Jianrong Li; Natalya F. Watson; Angela Q. Fang; Hector C. Aguilar; Matteo Porotto; Anna N. Honko; Robert Damoiseaux; John P. Miller; Sara E. Woodson; Steven Chantasirivisal; Vanessa Fontanes; Oscar A. Negrete; Paul Krogstad; Asim Dasgupta; Anne Moscona; Lisa E. Hensley; Sean P. J. Whelan; Kym F. Faull; Michael E. Jung; Benhur Lee

We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus–cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure–activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus–cell but not cell–cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus–cell fusion.


Blood | 2008

Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia

Ilaria Libani; Ella Guy; Luca Melchiori; Raffaella Schiro; Pedro Ramos; Laura Breda; Thomas Scholzen; Amy Chadburn; Yifang Liu; Margrit Kernbach; Bettina Baron-Lühr; Matteo Porotto; Maria de Sousa; Eliezer A. Rachmilewitz; John Hood; M. Domenica Cappellini; Patricia J. Giardina; Robert W. Grady; Johannes Gerdes; Stefano Rivella

In beta-thalassemia, the mechanism driving ineffective erythropoiesis (IE) is insufficiently understood. We analyzed mice affected by beta-thalassemia and observed, unexpectedly, a relatively small increase in apoptosis of their erythroid cells compared with healthy mice. Therefore, we sought to determine whether IE could also be characterized by limited erythroid cell differentiation. In thalassemic mice, we observed that a greater than normal percentage of erythroid cells was in S-phase, exhibiting an erythroblast-like morphology. Thalassemic cells were associated with expression of cell cycle-promoting genes such as EpoR, Jak2, Cyclin-A, Cdk2, and Ki-67 and the antiapoptotic protein Bcl-X(L). The cells also differentiated less than normal erythroid ones in vitro. To investigate whether Jak2 could be responsible for the limited cell differentiation, we administered a Jak2 inhibitor, TG101209, to healthy and thalassemic mice. Exposure to TG101209 dramatically decreased the spleen size but also affected anemia. Although our data do not exclude a role for apoptosis in IE, we propose that expansion of the erythroid pool followed by limited cell differentiation exacerbates IE in thalassemia. In addition, these results suggest that use of Jak2 inhibitors has the potential to profoundly change the management of this disorder.


PLOS Pathogens | 2010

Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

Matteo Porotto; Barry Rockx; Christine C. Yokoyama; Aparna Talekar; Ilaria DeVito; Laura M. Palermo; Jie Liu; Riccardo Cortese; Min Lu; Heinz Feldmann; Antonello Pessi; Anne Moscona

In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.


Journal of Virology | 2007

A Second Receptor Binding Site on Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Contributes to Activation of the Fusion Mechanism

Matteo Porotto; Micaela Fornabaio; Glen E. Kellogg; Anne Moscona

ABSTRACT The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three discrete activities that each affect the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. The interrelationship between the receptor binding and fusion-triggering functions of HN has not been clear. For human parainfluenza type 3 (HPIV3), one bifunctional site on HN can carry out both receptor binding and neuraminidase activities, and this sites receptor binding can be inhibited by the small receptor analog zanamivir. We now report experimental evidence, complemented by computational data, for a second receptor binding site near the HPIV3 HN dimer interface. This second binding site can mediate receptor binding even in the presence of zanamivir, and it differs from the second receptor binding site of the paramyxovirus Newcastle disease virus in its function and its relationship to the primary binding site. This second binding site of HPIV3 HN is involved in triggering F. We suggest that the two receptor binding sites on HPIV3 HN each contribute in distinct ways to virus-cell interaction; one is the multifunctional site that contains both binding and neuraminidase activities, and the other contains binding activity and also is involved in fusion promotion.


Journal of Virology | 2005

Influence of the Human Parainfluenza Virus 3 Attachment Protein's Neuraminidase Activity on Its Capacity To Activate the Fusion Protein

Matteo Porotto; Matthew Murrell; Olga Greengard; Lynne Doctor; Anne Moscona

ABSTRACT In order to examine functions of the hemagglutinin-neuraminidase (HN) protein that quantitatively influence fusion promotion, human parainfluenza virus 3 (HPIV3) variants with alterations in HN were studied. The variant HNs have mutations that affect either receptor binding avidity, neuraminidase activity, or fusion protein (F) activation. Neuraminidase activity was regulated by manipulation of temperature and pH. F activation was assessed by quantitating the irreversible binding of target erythrocytes (RBC) to HN/F-coexpressing cells in the presence of 4-GU-DANA (zanamivir) to release target cells bound only by HN-receptor interactions; the remaining, irreversibly bound target cells are retained via the fusion protein. In cells coexpressing wild-type (wt) or variant HNs with wt F, the fusion promotion capacity of HN was distinguished from target cell binding by measuring changes with time in the amounts of target RBC that were (i) reversibly bound by HN-receptor interaction (released only upon the addition of 4-GU-DANA), (ii) released by HN′s neuraminidase, and (iii) irreversibly bound by F-insertion or fusion (F triggered). For wt HN, lowering the pH (to approach the optimum for HPIV3 neuraminidase) decreased F triggering via release of HN from its receptor. An HN variant with increased receptor binding avidity had F-triggering efficiency like that of wt HN at pH 8.0, but this efficiency was not decreased by lowering the pH to 5.7, which suggested that the variant HN′s higher receptor binding activity counterbalanced the receptor dissociation promoted by increased neuraminidase activity. To dissect the specific contribution of neuraminidase to triggering, two variant HNs that are triggering-defective due to a mutation in the HN stalk were evaluated. One of these variants has, in addition, a mutation in the globular head that renders it neuraminidase dead, while the HN with the stalk mutation alone has 30% of wt neuraminidase. While the variant without neuraminidase activity triggered F effectively at 37°C irrespective of pH, the variant possessing effective neuraminidase activity completely failed to activate F at pH 5.7 and was capable of only minimal triggering activity even at pH 8.0. These results demonstrate that neuraminidase activity impacts the extent of HPIV3-mediated fusion by releasing HN from contact with receptor. Any particular HN′s competence to promote F-mediated fusion depends on the balance between its inherent F-triggering efficacy and its receptor-attachment regulatory functions (binding and receptor cleavage).


Journal of Virology | 2007

Molecular Determinants of Antiviral Potency of Paramyxovirus Entry Inhibitors

Matteo Porotto; P. Carta; Yiqun Deng; Glen E. Kellogg; Michael A. Whitt; Min Lu; Bruce A. Mungall; Anne Moscona

ABSTRACT Hendra virus (HeV) and Nipah virus (NiV) constitute the Henipavirus genus of paramyxoviruses, both fatal in humans and with the potential for subversion as agents of bioterrorism. Binding of the HeV/NiV attachment protein (G) to its receptor triggers a series of conformational changes in the fusion protein (F), ultimately leading to formation of a postfusion six-helix bundle (6HB) structure and fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions, the first (the N-terminal heptad repeat [HRN]) adjacent to the fusion peptide and the second (the C-terminal heptad repeat [HRC]) immediately preceding the transmembrane domain. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing activated F molecules from forming the 6HB structure that is required for fusion. We previously reported that a human parainfluenza virus 3 (HPIV3) F peptide effectively inhibits infection mediated by the HeV glycoproteins in pseudotyped-HeV entry assays more effectively than the comparable HeV-derived peptide, and we now show that this peptide inhibits live-HeV and -NiV infection. HPIV3 F peptides were also effective in inhibiting HeV pseudotype virus entry in a new assay that mimics multicycle replication. This anti-HeV/NiV efficacy can be correlated with the greater potential of the HPIV3 C peptide to interact with the HeV F N peptide coiled-coil trimer, as evaluated by thermal unfolding experiments. Furthermore, replacement of a buried glutamic acid (glutamic acid 459) in the C peptide with valine enhances antiviral potency and stabilizes the 6HB conformation. Our results strongly suggest that conserved interhelical packing interactions in the F protein fusion core are important determinants of C peptide inhibitory activity and offer a strategy for the development of more-potent analogs of F peptide inhibitors.


Journal of Virology | 2010

Viral entry inhibitors targeted to the membrane site of action

Matteo Porotto; Christine C. Yokoyama; Laura M. Palermo; Bruce A. Mungall; Mohamad Aljofan; Riccardo Cortese; Antonello Pessi; Anne Moscona

ABSTRACT The fusion of enveloped viruses with the host cell is driven by specialized fusion proteins to initiate infection. The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains, which are central to the complex conformational changes leading to fusion: the first heptad repeat (HRN) is adjacent to the fusion peptide, while the second (HRC) immediately precedes the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one HR peptide, T20 (enfuvirtide), is in clinical use for HIV-1. For paramyxoviruses, the activities of two membrane proteins, the receptor-binding protein (hemagglutinin-neuraminidase [HN] or G) and the fusion protein (F), initiate viral entry. The binding of HN or G to its receptor on a target cell triggers the activation of F, which then inserts into the target cell and mediates the membrane fusion that initiates infection. We have shown that for paramyxoviruses, the inhibitory efficacy of HR peptides is inversely proportional to the rate of F activation. For HIV-1, the antiviral potency of an HRC-derived peptide can be dramatically increased by targeting it to the membrane microdomains where fusion occurs, via the addition of a cholesterol group. We report here that for three paramyxoviruses—human parainfluenza virus type 3 (HPIV3), a major cause of lower respiratory tract diseases in infants, and the emerging zoonotic viruses Hendra virus (HeV) and Nipah virus (NiV), which cause lethal central nervous system diseases—the addition of cholesterol to a paramyxovirus HRC-derived peptide increased antiviral potency by 2 log units. Our data suggest that this enhanced activity is indeed the result of the targeting of the peptide to the plasma membrane, where fusion occurs. The cholesterol-tagged peptides on the cell surface create a protective antiviral shield, target the F protein directly at its site of action, and expand the potential utility of inhibitory peptides for paramyxoviruses.


The Journal of Infectious Diseases | 2010

A Recombinant Sialidase Fusion Protein Effectively Inhibits Human Parainfluenza Viral Infection in Vitro and in Vivo

Anne Moscona; Matteo Porotto; Samantha G. Palmer; Caroline Tai; Lori Aschenbrenner; Gallen B. Triana-Baltzer; Qi-Xiang Li; David Wurtman; Stefan Niewiesk; Fang Fang

BACKGROUND The first step in infection by human parainfluenza viruses (HPIVs) is binding to the surface of respiratory epithelial cells via interaction between viral receptor-binding molecules and sialic acid-containing receptors. DAS181, a recombinant sialidase protein containing the catalytic domain of Actinomyces viscosus sialidase, removes cell surface sialic acid, and we proposed that it would inhibit HPIV infection. METHODS Depletion of sialic acid receptors by DAS181 was evaluated by lectin-binding assays. Anti-HPIV activity in cultured cell lines and in human airway epithelium was assessed by the reduction in viral genomes and/or plaque forming units on treatment. In vivo efficacy of intranasally administered DAS181 was assessed using a cotton rat model. RESULTS DAS181-mediated desialylation led to anti-HPIV activity in cell lines and human airway epithelium. Intranasal DAS181 in cotton rats, a model for human disease, significantly curtailed infection. CONCLUSIONS Enzymatic removal of the sialic acid moiety of HPIV receptors inhibits infection with all tested HPIV strains, both in vitro and in cotton rats. Enzyme-mediated removal of sialic acid receptors represents a novel antiviral strategy for HPIV. The results of this study raise the possibility of a broad spectrum antiviral agent for influenza virus and HPIVs.


Journal of Virology | 2004

Inhibition of Parainfluenza Virus Type 3 and Newcastle Disease Virus Hemagglutinin-Neuraminidase Receptor Binding: Effect of Receptor Avidity and Steric Hindrance at the Inhibitor Binding Sites

Matteo Porotto; Matthew Murrell; Olga Greengard; Michael C. Lawrence; Jennifer L. McKimm-Breschkin; Anne Moscona

ABSTRACT Zanamivir (4-guanidino-Neu5Ac2en [4-GU-DANA]) inhibits not only the neuraminidase activity but also the receptor interaction of the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN), blocking receptor binding and subsequent fusion promotion. All activities of the HPIV3 variant ZM1 HN (T193I/I567V) are less sensitive to 4-GU-DANAs effects. The T193I mutation in HN confers both increased receptor binding and increased neuraminidase activity, as well as reduced sensitivities of both activities to 4-GU-DANA inhibition, consistent with a single site on the HN molecule carrying out both catalysis and binding. We now provide evidence that the HPIV3 variants resistance to receptor-binding inhibition by 4-GU-DANA is related to a reduced affinity of the HN receptor-binding site for this compound as well as to an increase in the avidity of HN for the receptor. Newcastle disease virus (NDV) HN and HPIV3 HN respond differently to inhibition in ways that suggest a fundamental distinction between them. NDV HN-receptor binding is less sensitive than HPIV3 HN-receptor binding to 4-GU-DANA, while its neuraminidase activity is highly sensitive. Both HPIV3 and NDV HNs are sensitive to receptor-binding inhibition by the smaller molecule DANA. However, for NDV HN, some receptor binding cannot be inhibited. These data are consistent with the presence in NDV HN of a second receptor-binding site that is devoid of enzyme activity and has a negligible, if any, affinity for 4-GU-DANA. Avidity for the receptor contributes to resistance by allowing the receptor to compete effectively with inhibitors for interaction with HN, while the further determinant of resistance is the reduced binding of the inhibitor molecule to the binding pocket on HN. Based upon our data and recent three-dimensional structural information on the HPIV3 and NDV HNs, we propose mechanisms for the observed sensitivity and resistance of HN to receptor-binding inhibition and discuss the implications of these mechanisms for the distribution of HN functions.


Journal of Virology | 2006

Paramyxovirus Receptor-Binding Molecules: Engagement of One Site on the Hemagglutinin-Neuraminidase Protein Modulates Activity at the Second Site

Matteo Porotto; Micaela Fornabaio; Olga Greengard; Matthew Murrell; Glen E. Kellogg; Anne Moscona

ABSTRACT The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three different activities: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. These three discrete properties each affect the ability of HN to promote viral fusion and entry. For human parainfluenza type 3, one bifunctional site on HN can carry out both binding and neuraminidase, and the receptor mimic, zanamivir, impairs viral entry by blocking receptor binding. We report here that for Newcastle disease virus, the HN receptor avidity is increased by zanamivir, due to activation of a second site that has higher receptor avidity. Only certain receptor mimics effectively activate the second site (site II) via occupation of site I; yet without activation of this second site, binding is mediated entirely by site I. Computational modeling designed to complement the experimental approaches suggests that the potential for small molecule receptor mimics to activate site II, upon binding to site I, directly correlates with their predicted strengths of interaction with site I. Taken together, the experimental and computational data show that the molecules with the strongest interactions with site I—zanamivir and BCX 2798—lead to the activation of site II. The finding that site II, once activated, shows higher avidity for receptor than site I, suggests paradigms for further elucidating the regulation of HN′s multiple functions in the viral life cycle.

Collaboration


Dive into the Matteo Porotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Greengard

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrille Mathieu

École normale supérieure de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge