Laura M. Pérez
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura M. Pérez.
The Astrophysical Journal | 2015
Crystal Lee Brogan; Laura M. Pérez; Todd R. Hunter; William R. F. Dent; A. S. Hales; Richard E. Hills; Stuartt A. Corder; Edward B. Fomalont; C. Vlahakis; Yoshiharu Asaki; Denis Barkats; A. Hirota; J. A. Hodge; C. M. V. Impellizzeri; R. Kneissl; E. Liuzzo; R. Lucas; N. Marcelino; Satoki Matsushita; K. Nakanishi; N. Phillips; A. M. S. Richards; I. Toledo; R. Aladro; D. Broguiere; J. R. Cortes; Paulo C. Cortes; Daniel Espada; F. Galarza; D. Garcia Appadoo
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0. ′′ 075 (10 AU) to 0. ′′ 025 (3.5 AU), revealing an astonishing level of detail in the cir cumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72 ◦ ± 0.05 ◦ ) and position angle (+138.02 ◦ ± 0.07 ◦ ). We obtain a high-fidelity image of the 1.0 mm spectral index (�), which ranges from � � 2.0 in the optically-thick central peak and two brightest ring s, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation incl ude an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO + (1-0) which exhibits a pattern over LSR velocities from 2-12 km s -1 consistent with Keplerian motion around a �1.3M⊙ star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protost ars XZ Tau (A/B) and LkH�358 at 2.9 mm. Subject headings: stars: individual (HL Tau, XZ Tau, LkH�358) — protoplanetary disks — stars: formation — submillimeter: planetary systems — techniques: interferometric
The Astrophysical Journal | 2014
Laura M. Pérez; Andrea Isella; John M. Carpenter; Claire J. Chandler
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and ^(12)CO J = 6-5 spectral line emission of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We modeled these disk structures with a ring and an azimuthal Gaussian, where the azimuthal Gaussian is motivated by the steady-state vortex solution from Lyra & Lin. Compared to recent observations of HD 142527, Oph IRS 48, and LkHα 330, these are low-contrast (≾ 2) asymmetries. Nevertheless, a ring alone is not a good fit, and the addition of a vortex prescription describes these data much better. The asymmetric component encompasses 15% and 28% of the total disk emission in SAO 206462 and SR 21, respectively, which corresponds to a lower limit of 2 M_(Jup) of material within the asymmetry for both disks. Although the contrast in the dust asymmetry is low, we find that the turbulent velocity inside it must be large (~20% of the sound speed) in order to drive these azimuthally wide and radially narrow vortex-like structures. We obtain residuals from the ring and vortex fitting that are still significant, tracing non-axisymmetric emission in both disks. We compared these submillimeter observations with recently published H-band scattered light observations. For SR 21 the scattered light emission is distributed quite differently from the submillimeter continuum emission, while for SAO 206462 the submillimeter residuals are suggestive of spiral-like structure similar to the near-IR emission.
The Astrophysical Journal | 2016
Sean M. Andrews; David J. Wilner; Zhaohuan Zhu; T. Birnstiel; John M. Carpenter; Laura M. Pérez; Xue-Ning Bai; Karin I. Öberg; A. Meredith Hughes; Andrea Isella; Luca Ricci
We present long-baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 micron continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 AU (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1-6 AU) with modest contrasts (5-30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed features occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 AU from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ~AU scales can be common, fundamental factors in disk evolution, and that high resolution microwave imaging can help characterize them during the epoch of planet formation.
The Astrophysical Journal | 2013
Andrea Isella; Laura M. Pérez; John M. Carpenter; Luca Ricci; Sean M. Andrews; Katherine A. Rosenfeld
Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.
Astronomy and Astrophysics | 2015
N. van der Marel; E. F. van Dishoeck; S. Bruderer; Laura M. Pérez; Andrea Isella
Transitional disks with large dust cavities are important laboratories to study planet formation and disk evolution. Cold gas may still be present inside these cavities, but the quantification of this gas is challenging. The gas content is important to constrain the origin of the dust cavity. We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO 6--5 and 690 GHz (Band 9) continuum of five well-studied transitional disks. In addition, we analyze previously published Band 7 observations of a disk in 12CO 3--2 line and 345 GHz continuum. The observations are used to set constraints on the gas and dust surface density profiles, in particular the drop delta-gas of the gas density inside the dust cavity. The physical-chemical modeling code DALI is used to analyze the gas and dust images simultaneously. We model SR21, HD135344B, LkCa15, SR24S and RXJ1615-3255 (Band 9) and J1604-2130 (Band 7). The SED and continuum visibility curve constrain the dust surface density. Subsequently, the same model is used to calculate the 12CO emission, which is compared with the observations through spectra and intensity cuts. The amount of gas inside the cavity is quantified by varying the delta-gas parameter. Model fits to the dust and gas indicate that gas is still present inside the dust cavity for all disks but at a reduced level. The gas surface density drops inside the cavity by at least a factor 10, whereas the dust density drops by at least a factor 1000. Disk masses are comparable with previous estimates from the literature, cavity radii are found to be smaller than in the 345 GHz SubMillimeter Array (SMA) data. The derived gas surface density profiles suggest clearing of the cavity by one or more companions in all cases, trapping the millimeter-sized dust at the edge of the cavity.
Science | 2016
Laura M. Pérez; John M. Carpenter; Sean M. Andrews; Luca Ricci; Andrea Isella; H. Linz; Anneila I. Sargent; David J. Wilner; Thomas Henning; Adam T. Deller; Claire J. Chandler; Cornelis P. Dullemond; Joseph Lazio; K. M. Menten; S. Corder; Shaye Storm; L. Testi; Marco Tazzari; Woojin Kwon; Nuria Calvet; J. S. Greaves; Robert J. Harris; Lee G. Mundy
Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.
Astronomy and Astrophysics | 2014
J. Menu; R. van Boekel; Th. Henning; Claire J. Chandler; H. Linz; M. Benisty; Sylvestre Lacour; M. Min; Christoffel Waelkens; Sean M. Andrews; Nuria Calvet; John M. Carpenter; S. Corder; Adam T. Deller; J. S. Greaves; Robert J. Harris; Andrea Isella; Woojin Kwon; Joseph Lazio; J.-B. Le Bouquin; Francois Menard; Lee G. Mundy; Laura M. Pérez; Luca Ricci; A. I. Sargent; Shaye Storm; L. Testi; David J. Wilner
Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at di erent wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the di erent faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model di erences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner 3 AU, and (2) the largest grains (>100 m) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the di erent regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains di ers from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.
Nature | 2016
John J. Tobin; Kaitlin M. Kratter; M. V. Persson; Leslie W. Looney; Michael M. Dunham; Dominique Segura-Cox; Zhi Yun Li; Claire J. Chandler; S. Sadavoy; Robert J. Harris; Carl Melis; Laura M. Pérez
Binary and multiple star systems are a frequent outcome of the star formation process and as a result almost half of all stars with masses similar to that of the Sun have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large-scale fragmentation of turbulent gas cores and filaments or smaller-scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of more than 1,000 astronomical units has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal system with which to search for evidence of disk fragmentation as it is in an early phase of the star formation process, it is likely to be less than 150,000 years old and all of the protostars in the system are separated by less than 200 astronomical units. Here we report observations of dust and molecular gas emission that reveal a disk with a spiral structure surrounding the three protostars. Two protostars near the centre of the disk are separated by 61 astronomical units and a tertiary protostar is coincident with a spiral arm in the outer disk at a separation of 183 astronomical units. The inferred mass of the central pair of protostellar objects is approximately one solar mass, while the disk surrounding the three protostars has a total mass of around 0.30 solar masses. The tertiary protostar itself has a minimum mass of about 0.085 solar masses. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150 and 320 astronomical units, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.
Astronomy and Astrophysics | 2016
Marco Tazzari; L. Testi; B Ercolano; A. Natta; Andrea Isella; Claire J. Chandler; Laura M. Pérez; Sean M. Andrews; David J. Wilner; Luca Ricci; T. Henning; H. Linz; Woojin Kwon; S. Corder; Cornelis P. Dullemond; John M. Carpenter; A. I. Sargent; Lee G. Mundy; Shaye Storm; Nuria Calvet; Ja Greaves; Joseph Lazio; Adam T. Deller
Context. The growth of dust grains from sub-mu m to mm and cm sizes is the first step towards the formation of planetesimals. Theoretical models of grain growth predict that dust properties change as a function of disk radius, mass, age, and other physical conditions. High angular resolution observations at several (sub-)mm wavelengths constitute the ideal tool with which to directly probe the bulk of dust grains and to investigate the radial distribution of their properties. Aims. We lay down the methodology for a multiwavelength analysis of (sub-) mm and cm continuum interferometric observations to self-consistently constrain the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. Methods. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. Results. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range similar to 0.88 mm to similar to 10 mm is available from SMA, CARMA, and VLA. In these disks we find evidence of a decrease in the maximum dust grain size, a(max), with radius. We derive large a(max) values up to 1 cm in the inner disk 15 AU <= R <= 30 AU and smaller grains with a(max) similar to 1 mm in the outer disk (R greater than or similar to 80 AU). Our analysis of the AS 209 protoplanetary disk confirms previous literature results showing a(max) decreasing with radius. Conclusions. Theoretical studies of planetary formation through grain growth are plagued by the lack of direct information on the radial distribution of the dust grain size. In this paper we develop a multiwavelength analysis that will allow this missing quantity to be constrained for statistically relevant samples of disks and to investigate possible correlations with disk or stellar parameters.
Astrophysical Journal Supplement Series | 2011
Melissa L. Enoch; Stuartt A. Corder; Gaspard Duchene; Douglas C.-J. Bock; Alberto D. Bolatto; T. Culverhouse; Woojin Kwon; James W. Lamb; Erik M. Leitch; D. P. Marrone; Stephen Muchovej; Laura M. Pérez; Stephen L. Scott; Peter J. Teuben; Melvyn C. H. Wright; B. Ashley Zauderer
We present high-resolution CARMA 230 GHz continuum imaging of nine deeply embedded protostars in the Serpens Molecular Cloud, including six of the nine known Class 0 protostars in Serpens. This work is part of a program to characterize disk and envelope properties for a complete sample of Class 0 protostars in nearby low-mass star-forming regions. Here, we present CARMA maps and visibility amplitudes as a function of uv-distance for the Serpens sample. Observations are made in the B, C, D, and E antenna configurations, with B configuration observations utilizing the CARMA Paired Antenna Calibration System. Combining data from multiple configurations provides excellent uv-coverage (4-500 kλ), allowing us to trace spatial scales from 10^2 to 10^4 AU. We find evidence for compact disk components in all of the observed Class 0 protostars, suggesting that disks form at very early times (t < 0.2 Myr) in Serpens. We make a first estimate of disk masses using the flux at 50 kλ, where the contribution from the envelope should be negligible, assuming an unresolved disk. The resulting disk masses range from 0.04 M_☉ to 1.7 M_☉, with a mean of approximately 0.2 M_☉. Our high-resolution maps are also sensitive to binary or multiple sources with separations ≳ 250 AU, but significant evidence of multiplicity on scales <2000 AU is seen in only one source.