Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Ordovas is active.

Publication


Featured researches published by Laura Ordovas.


PLOS ONE | 2010

Human Embryonic and Rat Adult Stem Cells with Primitive Endoderm-Like Phenotype Can Be Fated to Definitive Endoderm, and Finally Hepatocyte-Like Cells

Philip Roelandt; Karen Pauwelyn; Pau Sancho-Bru; Kartik Subramanian; Bipasha Bose; Laura Ordovas; Kim Vanuytsel; Martine Geraerts; Meri T. Firpo; Rita Vos; Johan Fevery; Frederik Nevens; Wei Shou Hu; Catherine M. Verfaillie

Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.


Stem cell reports | 2015

Restoration of Progranulin Expression Rescues Cortical Neuron Generation in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia

Susanna Raitano; Laura Ordovas; Louis De Muynck; Wenting Guo; Ira Espuny-Camacho; Martine Geraerts; Satish Khurana; Kim Vanuytsel; Balázs István Tóth; Thomas Voets; Rik Vandenberghe; Toni Cathomen; Ludo Van Den Bosch; Pierre Vanderhaeghen; Philip Van Damme; Catherine M. Verfaillie

Summary To understand how haploinsufficiency of progranulin (PGRN) causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSCs) from patients carrying the GRNIVS1+5G > C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD. Although generation of neuroprogenitors was unaffected, their further differentiation into CTIP2-, FOXP2-, or TBR1-TUJ1 double-positive cortical neurons, but not motorneurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of GRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNA sequencing analysis confirmed reversal of the altered gene expression profile following genetic correction. We identified the Wnt signaling pathway as one of the top defective pathways in FTD-iPSC-derived neurons, which was reversed following genetic correction. Differentiation of FTD-iPSCs in the presence of a WNT inhibitor mitigated defective corticogenesis. Therefore, we demonstrate that PGRN haploinsufficiency hampers corticogenesis in vitro.


Journal of Biotechnology | 2014

Hepatic differentiation of human embryonic stem cells on microcarriers.

Yonsil Park; Yemiao Chen; Laura Ordovas; Catherine M. Verfaillie

Translation of stem cell research to industrial and clinical settings mostly requires large quantities of cells, especially those involving large organs such as the liver. A scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiated cells. To increase the culture efficiency in bioreactor system, high surface to volume ratio needs to be achieved. We employed a microcarrier culture system for the expansion of undifferentiated human embryonic stem cells (hESCs) as well as for directed differentiation of these cells to hepatocyte-like cells. Cells in single cell suspension were attached to the bead surface in even distribution and were expanded to 1×10(6)cells/ml within 2 days of hESC culture with maintenance of the level of pluripotency markers. Directed differentiation into hepatocyte-like cells on microcarriers, both in static culture and stirred bioreactors, induced similar levels of hepatocyte-like cell differentiation as observed with cells cultured in conventional tissue culture plates. The cells expressed both immature and mature hepatocyte-lineage genes and proteins such as asialoglycoprotein receptor-1 (ASGPR-1) and albumin. Differentiated cells exhibited functional characteristics such as secretion of albumin and urea, and CYP3A4 activity could be detected. Microcarriers thus offer the potential for large-scale expansion and differentiation of hESCs induced hepatocyte-like cells in a more controllable bioreactor environment.


Stem cell reports | 2015

Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

Laura Ordovas; Ruben Boon; Mariaelena Pistoni; Yemiao Chen; Esther Wolfs; Wenting Guo; Rangarajan Sambathkumar; Sylwia Bobis-Wozowicz; Nicky Helsen; Jolien Vanhove; Pieter Berckmans; Qing Cai; Kim Vanuytsel; Kristel Eggermont; Veerle Vanslembrouck; Béla Z. Schmidt; Susanna Raitano; Ludo Van Den Bosch; Yaakov Nahmias; Toni Cathomen; Tom Struys; Catherine M. Verfaillie

Summary Tools for rapid and efficient transgenesis in “safe harbor” loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.


Nature Communications | 2017

HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients

Wenting Guo; Ruben Boon; Philip Van Damme; Ludo Van Den Bosch; Werend Boesmans; Natasja Geens; Jolien Steyaert; Laura Fumagalli; Pieter Vanden Berghe; Matthew Jarpe; Laura Ordovas; Thomas Vanwelden; Catherine M. Verfaillie; Wim Robberecht; Cynthia Lefebvre-Omar; Susanne Petri; Marc Welters; Maximilian Naujock; Abdulsamie Patel; Tine Tricot; Delphine Bohl; Pieter Baatsen; Florian Wegner; Veronick Benoy; Jared Sterneckert; Tijs Vandoorne

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)–mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs.Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.


Biotechnology Advances | 2013

Stem cells and liver engineering.

Laura Ordovas; Yonsil Park; Catherine M. Verfaillie

Human hepatocytes, suitable for treatment of patients with liver failure, for the creation of bioartificial (BAL) devices, or for studies for toxicity and metabolization studies in the pharmaceutical industry, are in short supply due to the lack of donor organs. Therefore, methods that allow ex vivo expansion of hepatocytes with mature function are being pursued. One cell source, believed to be a possible inexhaustible source of hepatocytes, is pluripotent stem cells (PSCs). However, directed differentiation of PSCs to cells with features of adult hepatocytes is not yet possible. Differentiated progeny remains mixed and PSC progeny does not have a number of the functional features of mature hepatocytes. In this review article, we will address tools being developed that allow for the identification of mature hepatocytes, in a non-invasive manner; to perform lineage tracing of PSC progeny; and novel culture systems being created for the in vitro differentiation of PSCs to hepatocyte like cells, and for the maintenance of primary liver derived hepatocytes or PSC-derived hepatic progeny in culture. As conventional two-dimensional (2D) static culture conditions poorly recapitulate the in vivo cellular environment, we will discuss bioreactor systems for liver tissue engineering, both macro-scale and micro-scale culture systems.


Stem Cells Translational Medicine | 2014

Prospectively Isolated NGN3‐Expressing Progenitors From Human Embryonic Stem Cells Give Rise to Pancreatic Endocrine Cells

Qing Cai; Paola Bonfanti; Rangarajan Sambathkumar; Kim Vanuytsel; Jolien Vanhove; Conny Gysemans; Maria Debiec-Rychter; Susanna Raitano; Harry Heimberg; Laura Ordovas; Catherine M. Verfaillie

Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell‐based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3′ end of NGN3 using zinc finger nuclease‐mediated homologous recombination to allow selection of NGN3eGFP+ cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP+ cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone‐expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3+ cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell‐based therapies.


Stem Cell Research | 2014

FANCA knockout in human embryonic stem cells causes a severe growth disadvantage

Kim Vanuytsel; Qing Cai; Nisha Nair; Satish Khurana; Swati Shetty; Joris Vermeesch; Laura Ordovas; Catherine M. Verfaillie

Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage.


Alzheimers & Dementia | 2018

Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration

Juan Antonio García-León; Alfredo Cabrera-Socorro; Kristel Eggermont; Ann Swijsen; Joke Terryn; Raheem Fazal; Fatemeharefeh Nami; Laura Ordovas; Ana Quiles; Frederic Lluis; Lutgarde Serneels; Keimpe D. Wierda; Annerieke Sierksma; Mohamed Kreir; Francisco Pestana; Philip Van Damme; Bart De Strooper; Lieven Thorrez; Andreas Ebneth; Catherine M. Verfaillie

Tauopathies are neurodegenerative diseases characterized by TAU protein–related pathology, including frontotemporal dementia and Alzheimers disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening.


Journal of Visualized Experiments | 2016

Rapid and Efficient Generation of Recombinant Human Pluripotent Stem Cells by Recombinase-mediated Cassette Exchange in the AAVS1 Locus

Laura Ordovas; Ruben Boon; Mariaelena Pistoni; Yemiao Chen; Rangarajan Sambathkumar; Nicky Helsen; Jolien Vanhove; Pieter Berckmans; Qing Cai; Kim Vanuytsel; Susanna Raitano; Catherine M. Verfaillie

Even with the revolution of gene-targeting technologies led by CRISPR-Cas9, genetic modification of human pluripotent stem cells (hPSCs) is still time consuming. Comparative studies that use recombinant lines with transgenes integrated into safe harbor loci could benefit from approaches that use site-specific targeted recombinases, like Cre or FLPe, which are more rapid and less prone to off-target effects. Such methods have been described, although they do not significantly outperform gene targeting in most aspects. Using Zinc-finger nucleases, we previously created a master cell line in the AAVS1 locus of hPSCs that contains a GFP-Hygromycin-tk expressing cassette, flanked by heterotypic FRT sequences. Here, we describe the procedures to perform FLPe recombinase-mediated cassette exchange (RMCE) using this line. The master cell line is transfected with a RMCE donor vector, which contains a promoterless Puromycin resistance, and with FLPe recombinase. Application of both a positive (Puromycin) and negative (FIAU) selection program leads to the selection of RMCE without random integrations. RMCE generates fully characterized pluripotent polyclonal transgenic lines in 15 d with 100% efficiency. Despite the recently described limitations of the AAVS1 locus, the ease of the system paves the way for hPSC transgenesis in isogenic settings, is necessary for comparative studies, and enables semi-high-throughput genetic screens for gain/loss of function analysis that would otherwise be highly time consuming.

Collaboration


Dive into the Laura Ordovas's collaboration.

Top Co-Authors

Avatar

Catherine M. Verfaillie

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kim Vanuytsel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Susanna Raitano

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jolien Vanhove

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nicky Helsen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Qing Cai

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ruben Boon

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kristel Eggermont

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ludo Van Den Bosch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mariaelena Pistoni

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge